Call us toll-free

Quick academic help

Don't let the stress of school get you down! Have your essay written by a professional writer before the deadline arrives.

Calculate the price


275 Words


Significance Tests / Hypothesis Testing

There are different ways of doing statistics. The technique used by the vast majority of biologists, and the technique that most of this handbook describes, is sometimes called "frequentist" or "classical" statistics. It involves testing a null hypothesis by comparing the data you observe in your experiment with the predictions of a null hypothesis. You estimate what the probability would be of obtaining the observed results, or something more extreme, if the null hypothesis were true. If this estimated probability (the P value) is small enough (below the significance value), then you conclude that it is unlikely that the null hypothesis is true; you reject the null hypothesis and accept an alternative hypothesis.

  Support or Reject Null Hypothesis

This criticism only applies to two-tailed tests, where the null hypothesis is "Things are exactly the same" and the alternative is "Things are different." Presumably these critics think it would be okay to do a one-tailed test with a null hypothesis like "Foot length of male chickens is the same as, or less than, that of females," because the null hypothesis that male chickens have smaller feet than females could be true. So if you're worried about this issue, you could think of a two-tailed test, where the null hypothesis is that things are the same, as shorthand for doing two one-tailed tests. A significant rejection of the null hypothesis in a two-tailed test would then be the equivalent of rejecting one of the two one-tailed null hypotheses.

Next section: to Inferential statistics (testing hypotheses)

Convert the hypothesis to math. Remember that the average is sometimes written as μ.

In the figure above, I used the to calculate the probability of getting each possible number of males, from 0 to 48, under the null hypothesis that 0.5 are male. As you can see, the probability of getting 17 males out of 48 total chickens is about 0.015. That seems like a pretty small probability, doesn't it? However, that's the probability of getting exactly 17 males. What you want to know is the probability of getting 17 or fewer males. If you were going to accept 17 males as evidence that the sex ratio was biased, you would also have accepted 16, or 15, or 14,… males as evidence for a biased sex ratio. You therefore need to add together the probabilities of all these outcomes. The probability of getting 17 or fewer males out of 48, under the null hypothesis, is 0.030. That means that if you had an infinite number of chickens, half males and half females, and you took a bunch of random samples of 48 chickens, 3.0% of the samples would have 17 or fewer males.

This number, 0.030, is the P value. It is defined as the probability of getting the observed result, or a more extreme result, if the null hypothesis is true. So "P=0.030" is a shorthand way of saying "The probability of getting 17 or fewer male chickens out of 48 total chickens, IF the null hypothesis is true that 50% of chickens are male, is 0.030."

That’s How to State the Null Hypothesis!

We are testing the null hypothesis that the variances forthe two batches are equal.

To do this, we need to set a significance level (also called alpha) that allows us to either reject or accept the alternative hypothesis. Most commonly, this value is set at 0.05.

In most cases, we are looking to see if we can show that we can reject the null hypothesis and accept the alternative hypothesis, which is that the population means are not equal:

Click the link the skip to the situation you need to support or reject null hypothesis for:
Order now

    As soon as we have completed your work, it will be proofread and given a thorough scan for plagiarism.


    Our clients' personal information is kept confidential, so rest assured that no one will find out about our cooperation.


    We write everything from scratch. You'll be sure to receive a plagiarism-free paper every time you place an order.


    We will complete your paper on time, giving you total peace of mind with every assignment you entrust us with.


    Want something changed in your paper? Request as many revisions as you want until you're completely satisfied with the outcome.

  • 24/7 SUPPORT

    We're always here to help you solve any possible issue. Feel free to give us a call or write a message in chat.

Order now

An hypothesis is a specific statement of prediction.

Another way your data can fool you is when you don't reject the null hypothesis, even though it's not true. If the true proportion of female chicks is 51%, the null hypothesis of a 50% proportion is not true, but you're unlikely to get a significant difference from the null hypothesis unless you have a huge sample size. Failing to reject the null hypothesis, even though it's not true, is a "false negative" or "Type II error." This is why we never say that our data shows the null hypothesis to be true; all we can say is that we haven't rejected the null hypothesis.

Support or reject null hypothesis in general situations.

Compare your to α. Support or reject null hypothesis? If the is less, reject the null hypothesis. If the P-value is more, keep the null hypothesis.

Hypothesis testing is the subject of this chapter.

Does a probability of 0.030 mean that you should reject the null hypothesis, and conclude that chocolate really caused a change in the sex ratio? The convention in most biological research is to use a significance level of 0.05. This means that if the P value is less than 0.05, you reject the null hypothesis; if P is greater than or equal to 0.05, you don't reject the null hypothesis. There is nothing mathematically magic about 0.05, it was chosen rather arbitrarily during the early days of statistics; people could have agreed upon 0.04, or 0.025, or 0.071 as the conventional significance level.

Hypothesis testing has an important

When you reject a null hypothesis, there's a chance that you're making a mistake. The null hypothesis might really be true, and it may be that your experimental results deviate from the null hypothesis purely as a result of chance. In a sample of 48 chickens, it's possible to get 17 male chickens purely by chance; it's even possible (although extremely unlikely) to get 0 male and 48 female chickens purely by chance, even though the true proportion is 50% males. This is why we never say we "prove" something in science; there's always a chance, however miniscule, that our data are fooling us and deviate from the null hypothesis purely due to chance. When your data fool you into rejecting the null hypothesis even though it's true, it's called a "false positive," or a "Type I error." So another way of defining the P value is the probability of getting a false positive like the one you've observed, if the null hypothesis is true.

The null hypothesis usually is a statement

After you do a statistical test, you are either going to reject or accept the null hypothesis. Rejecting the null hypothesis means that you conclude that the null hypothesis is not true; in our chicken sex example, you would conclude that the true proportion of male chicks, if you gave chocolate to an infinite number of chicken mothers, would be less than 50%.

Order now
  • You submit your order instructions

  • We assign an appropriate expert

  • The expert takes care of your task

  • We send it to you upon completion

Order now
  • 37 684

    Delivered orders

  • 763

    Professional writers

  • 311

    Writers online

  • 4.8/5

    Average quality score

Order now
  • Kim

    "I have always been impressed by the quick turnaround and your thoroughness. Easily the most professional essay writing service on the web."

  • Paul

    "Your assistance and the first class service is much appreciated. My essay reads so well and without your help I'm sure I would have been marked down again on grammar and syntax."

  • Ellen

    "Thanks again for your excellent work with my assignments. No doubts you're true experts at what you do and very approachable."

  • Joyce

    "Very professional, cheap and friendly service. Thanks for writing two important essays for me, I wouldn't have written it myself because of the tight deadline."

  • Albert

    "Thanks for your cautious eye, attention to detail and overall superb service. Thanks to you, now I am confident that I can submit my term paper on time."

  • Mary

    "Thank you for the GREAT work you have done. Just wanted to tell that I'm very happy with my essay and will get back with more assignments soon."

Ready to tackle your homework?

Place an order