Call us toll-free

Quick academic help

Don't let the stress of school get you down! Have your essay written by a professional writer before the deadline arrives.

Calculate the price


275 Words


What Are The Products Of Photosynthesis? - YouTube

Butwhat happens at night when there is no sunlightwhich is needed in photosynthesis? Interestingly,in order to maintain their metabolism and continuerespiration at night, plants must absorb oxygenfrom the air and give off carbon dioxide (which isexactly what animals do). Fortunately for all ofus oxygen breathers, plants produce approximatelyten times more oxygen during the day that whatthey consume at night.

16/12/2017 · What are the products of photosynthesis

So how can these factors have an effect on the rate of photosynthesis? Lets start off with the light intensity. When the light intensity is poor, there is a shortage of ATP and NADPH, as these are products from the light dependent reactions. Without these products the light independent reactions can't occur as glycerate 3-phosphate cannot be reduced. Therefore a shortage of these products will limit the rate of photosynthesis. When the carbon dioxide concentration is low, the amount of glycerate 3-phosphate produced is limited as carbon dioxide is needed for its production and therefore the rate of photosynthesis is affected. Finally, many enzymes are involved during the process of photosynthesis. At low temperatures these enzymes work slower. At high temperatures the enzymes no longer work effectively. This affects the rate of the reactions in the Calvin cycle and therefore the rate of photosynthesis will be affected.

What Is Produced By Plants During Photosynthesis?

what two things are produced during photosynthesis

It is easier to establish traceability for solid wood products than for paper-based products. Paper products are manufactured in pulp mills that typically draw wood from many sources. In the most complex cases, a network of dealers buying wood from many different loggers, landowners and sawmills may supply a pulp mill (Box 1 below). In a sawmill, logs usually lose their link to individual landowners in a sorting yard in the same way an agricultural business would combine grain from individual farmers in a common silo. The wood collected from sawmills – often chips that are by-products of solid-wood products manufacturing – further lose their individual identity during the paper making process.

Plants, being the only producers, have a crucial role to play in any food chain.

Photosynthesis is vital to facilitate the process of respiration in both, humans and animals, as our oxygen requirements are fulfilled by the oxygen which is produced during this process.

What Are The Products Of Photosynthesis Yahoo


• Sulfur Dioxide (SO2) – Sixty percent of sulfur dioxide comes from coal burning for electricity and home heating while 21 percent comes from refining and the combustion of petroleum products.
• Ozone (O3) – Ozone is a naturally occurring oxidant that exists in the upper atmosphere. O3 may be brought to Earth by turbulence during severe storms. Also, small amounts are formed by lightning. Automobile emissions and industrial emissions mix in the air and undergo photochemical reactions in sunlight releasing ozone and another oxidant, peroxyacetylnitrate (PAN). Naturally, high concentrations of these two oxidants build up where there are many automobiles.
• Nitrogen Oxides (NOx) – Probably the largest producer of nitrogen oxide is automotive exhaust. These are also formed by high temperature combustion when two natural air components are present; nitrogen and oxygen.
• Particulates – These are small particles emitted in smoke from burning fuel, particularly diesel, which enters our lungs and causes respiratory problems. With trees present, there is up to a 60 percent reduction in street-level particulates.

Urban forests help to improve our air quality. Heat from the earth is trapped in the atmosphere due to high levels of carbon dioxide (CO2) and other heat-trapping gases that prohibit it from releasing the heat into space. This creates a phenomenon known today as the “greenhouse effect.” Therefore, trees help by removing (sequestering) CO2 from the atmosphere during photosynthesis to form carbohydrates that are used in plant structure/function and return oxygen back into the atmosphere as a byproduct. Roughly half of the greenhouse effect is caused by CO2. Therefore, trees act as carbon sinks, alleviating the greenhouse effect.

Order now

    As soon as we have completed your work, it will be proofread and given a thorough scan for plagiarism.


    Our clients' personal information is kept confidential, so rest assured that no one will find out about our cooperation.


    We write everything from scratch. You'll be sure to receive a plagiarism-free paper every time you place an order.


    We will complete your paper on time, giving you total peace of mind with every assignment you entrust us with.


    Want something changed in your paper? Request as many revisions as you want until you're completely satisfied with the outcome.

  • 24/7 SUPPORT

    We're always here to help you solve any possible issue. Feel free to give us a call or write a message in chat.

Order now

Basic products of photosynthesis - Encyclopedia …

During photosynthesis, a plant is able to convert solar energy into a chemical form. It does this by capturing light coming from the sun and, through a series of reactions, using its energy to help build a sugar molecule called glucose. Glucose is made of six carbon atoms, six oxygen atoms, and twelve hydrogen atoms. When the plant makes the glucose molecule, it gets the carbon and oxygen atoms it needs from carbon dioxide, which it takes from the air. Carbon dioxide doesn't have any hydrogen in it, though, so the plant must use another source for hydrogen. The source that it uses is water. There is a lot of water on the earth, and every water molecule is composed of two hydrogen atoms and one oxygen atom. In order to take the hydrogen it needs to build glucose molecules, the plant uses the energy from the sun to break the water molecule apart, taking electrons and hydrogen from it and releasing the oxygen into the air. The electrons it takes are put into an electron transport system, where they are used to produce energy molecules called ATP that are used to build the glucose molecule-- all made possible by the sun's energy. Thus, during photosynthesis a plant consumes water, carbon dioxide, and light energy, and produces glucose and oxygen.

The sugar glucose is important because it is necessary for cellular respiration. During cellular respiration, the chemical energy in the glucose molecule is converted into a form that the plant can use for growth and reproduction. In the first step of respiration, called glycolysis, the glucose molecule is broken down into two smaller molecules called pyruvate, and a little energy is released in the form of ATP. This step in respiration does not require any oxygen and is therefore called anaerobic respiration. In the second step of respiration, the pyruvate molecules are rearranged and combined and rearranged again in a cycle. While the molecules are being rearranged in this cycle, carbon dioxide is produced, and electrons are pulled off and passed into an electron transport system which, just as in photosynthesis, generates a lot of ATP for the plant to use for growth and reproduction. This last step requires oxygen, and therefore is called aerobic respiration. Thus, the final result of cellular respiration is that the plant consumes glucose and oxygen and produces carbon dioxide, water, and ATP energy molecules.

At first, this doesn't seem to make any sense! If the plant can use the energy from the sun to make ATP, why does it go through all the trouble of then using up the ATP to make glucose, just so it can get ATP again? There are two reasons why the plant does this. First, in addition to ATP, the plant needs materials to grow. Glucose is an important building block that is necessary to produce all of the proteins, DNA, cells, tissues, etc. that are important to life, growth, and reproduction. Second, one problem with the sun is that it goes away every night, and during winter it isn't very bright. The plant needs energy all of the time. So, by producing glucose, the plant can store this molecule and then use it to produce energy during the night and over winter when there isn't enough sun to provide good photosynthesis.

It is very interesting how photosynthesis and cellular respiration help each other. During photosynthesis, the plant needs carbon dioxide and water-- both of which are released into the air during respiration. And during respiration, the plant needs oxygen and glucose, which are both produced through photosynthesis! So in a way, the products of photosynthesis support respiration, and the products of respiration support photosynthesis, forming a cycle.

While plants can complete this cycle by themselves, animals cannot, since animals aren't capable of photosynthesis! This means that animals have to survive solely through respiration. Also, since we animals can't produce glucose by ourselves, we have to get it from somewhere else-- from eating plants. We produce carbon dioxide that the plants need, and they produce the oxygen that we need, and then we eat them to get the glucose that we need. It seems that we need the plants a lot more than they need us!

Chemistry for Biologists: Photosynthesis

Photophosphorylation is the production of ATP using the energy of sunlight. Photophosphorylation is made possible as a result of chemiosmosis. Chemiosmosis is the movement of ions across a selectively permeable membrane, down their concentration gradient. During photosynthesis, light is absorbed by chlorophyll molecules. Electrons within these molecules are then raised to a higher energy state. These electrons then travel through Photosystem II, a chain of electron carriers and Photosystem I. As the electrons travel through the chain of electron carriers, they release energy. This energy is used to pump hydrogen ions across the thylakoid membrane and into the space within the thylakoid. A concentration gradient of hydrogen ions forms within this space. These then move back across the thylakoid membrane, down their concentration gradient through ATP synthase. ATP synthase uses the energy released from the movement of hydrogen ions down their concentration gradient to synthesise ATP from ADP and inorganic phosphate.

Order now
  • You submit your order instructions

  • We assign an appropriate expert

  • The expert takes care of your task

  • We send it to you upon completion

Order now
  • 37 684

    Delivered orders

  • 763

    Professional writers

  • 311

    Writers online

  • 4.8/5

    Average quality score

Order now
  • Kim

    "I have always been impressed by the quick turnaround and your thoroughness. Easily the most professional essay writing service on the web."

  • Paul

    "Your assistance and the first class service is much appreciated. My essay reads so well and without your help I'm sure I would have been marked down again on grammar and syntax."

  • Ellen

    "Thanks again for your excellent work with my assignments. No doubts you're true experts at what you do and very approachable."

  • Joyce

    "Very professional, cheap and friendly service. Thanks for writing two important essays for me, I wouldn't have written it myself because of the tight deadline."

  • Albert

    "Thanks for your cautious eye, attention to detail and overall superb service. Thanks to you, now I am confident that I can submit my term paper on time."

  • Mary

    "Thank you for the GREAT work you have done. Just wanted to tell that I'm very happy with my essay and will get back with more assignments soon."

Ready to tackle your homework?

Place an order