Call us toll-free

Quick academic help

Don't let the stress of school get you down! Have your essay written by a professional writer before the deadline arrives.

Calculate the price

Pages:

275 Words

$19,50

What are the electron carriers in photosynthesis

Arlt T, Schmidt S, Kaiser W, Lauterwasser C, Meyer M, Scheer H and Zinth W (1993) The accessory bacteriochlorophyll: A real electroncarrierin primary photosynthesis. Proc ... Rosker MJ, Wise FW and Tang CL (1986) Femtosecond relaxa...

In photosynthesis, electrons go down the chain and produce ATP between PHAEO and Photosystem I.

Abstract The paper presents a method for simplifying the system of differential equations describing electron transfer in complexes of carriermolecules...

it is an electron carrier capable of creating 2 ..

Finally, a NAD+ (an electron carrier) gains an electron from the CO2 and turns into NADH.

The above illustration draws from ideas in both Moore, et al. and Karp to outline the steps in the electron transport process that occurs in the thylakoid membranes of during photosynthesis. Both are utilized to to get electrons. Electron transport helps establish a proton gradient that powers production and also stores energy in the reduced coenzyme . This energy is used to power the to produce and other carbohydrates.

The numbered steps below correspond to the numbered steps inthe electron-transport chain animation in Figure 9, in the mainpage of the tutorial. (These are the same as the numbers on theelectron carriers (purple) in Figure 9). We recommend that youview the movie first, and refer to the text below forclarification of the steps in the movie.

Electron Transport in Photosynthesis

In photosynthesis, electron transport occurs in the membranes of chloroplasts or thylakoid discs.

In addition to producing NADPH, the light dependent reactions also produce oxygen as a waste product. When the special chlorophyll molecule at the reaction centre passes on the electrons to the chain of electron carriers, it becomes positively charged. With the aid of an enzyme at the reaction centre, water molecules within the thylakoid space are split. Oxygen and H+ ions are formed as a result and the electrons from the splitting of these water molecules are given to chlorophyll. The oxygen is then excreted as a waste product. This splitting of water molecules is called photolysis as it only occurs in the presence of light.

If the light intensity is not a limiting factor, there will usually be a shortage of NADP+ as NADPH accumulates within the stroma (see light independent reaction). NADP+ is needed for the normal flow of electrons in the thylakoid membranes as it is the final electron acceptor. If NADP+ is not available then the normal flow of electrons is inhibited. However, there is an alternative pathway for ATP production in this case and it is called cyclic photophosphorylation. It begins with Photosystem I absorbing light and becoming photoactivated. The excited electrons from Photosystem I are then passed on to a chain of electron carriers between Photosystem I and II. These electrons travel along the chain of carriers back to Photosystem I and as they do so they cause the pumping of protons across the thylakoid membrane and therefore create a proton gradient. As explained previously, the protons move back across the thylakoid membrane through ATP synthase and as they do so, ATP is produced. Therefore, ATP can be produced even when there is a shortage of NADP+.

In respiration, high energy electrons are transported from the Krebs cycle to the electron transport chain by the carrier molecule NADH.
Order now
  • UNMATCHED QUALITY

    As soon as we have completed your work, it will be proofread and given a thorough scan for plagiarism.

  • STRICT PRIVACY

    Our clients' personal information is kept confidential, so rest assured that no one will find out about our cooperation.

  • COMPLETE ORIGINALITY

    We write everything from scratch. You'll be sure to receive a plagiarism-free paper every time you place an order.

  • ON-TIME DELIVERY

    We will complete your paper on time, giving you total peace of mind with every assignment you entrust us with.

  • FREE CORRECTIONS

    Want something changed in your paper? Request as many revisions as you want until you're completely satisfied with the outcome.

  • 24/7 SUPPORT

    We're always here to help you solve any possible issue. Feel free to give us a call or write a message in chat.

Order now

Electron Transport in Photosynthesis This is an active graphic

The electrons from the chain of electron carriers are then accepted by Photosystem I. These electrons replace electrons previously lost from Photosystem I. Photosystem I then absorbs light and becomes photoactivated. The electrons become excited again as they are raised to a higher energy state. These excited electrons then pass along a short chain of electron carriers and are eventually used to reduce NADP+ in the stroma. NADP+ accepts two excited electrons from the chain of carriers and one H+ ion from the stroma to form NADPH.

Electron Carriers of Photosynthesis

The light-dependent reactions starts within Photosystem II. When the excited electron reaches the special chlorophyll molecule at the reaction centre of Photosystem II it is passed on to the chain of electron carriers. This chain of electron carriers is found within the thylakoid membrane. As this excited electron passes from one carrier to the next it releases energy. This energy is used to pump protons (hydrogen ions) across the thylakoid membrane and into the space within the thylakoids. This forms a proton gradient. The protons can travel back across the membrane, down the concentration gradient, however to do so they must pass through ATP synthase. ATP synthase is located in the thylakoid membrane and it uses the energy released from the movement of protons down their concentration gradient to synthesise ATP from ADP and inorganic phosphate. The synthesis of ATP in this manner is called non-cyclic photophosphorylation (uses the energy of excited electrons from photosystem II) .

the major electron carrier proteins involved ..

Photophosphorylation is the production of ATP using the energy of sunlight. Photophosphorylation is made possible as a result of chemiosmosis. Chemiosmosis is the movement of ions across a selectively permeable membrane, down their concentration gradient. During photosynthesis, light is absorbed by chlorophyll molecules. Electrons within these molecules are then raised to a higher energy state. These electrons then travel through Photosystem II, a chain of electron carriers and Photosystem I. As the electrons travel through the chain of electron carriers, they release energy. This energy is used to pump hydrogen ions across the thylakoid membrane and into the space within the thylakoid. A concentration gradient of hydrogen ions forms within this space. These then move back across the thylakoid membrane, down their concentration gradient through ATP synthase. ATP synthase uses the energy released from the movement of hydrogen ions down their concentration gradient to synthesise ATP from ADP and inorganic phosphate.

drives cyclic electron flow in photosynthesis.

Find out what the products of photosynthesis are and view the overall chemical reaction and equation. Cell Organelle Information - You will need to know both the structure and function of the organelles in a cell. Make sure you know the difference in organelles found. Correct circadian regulation increases plant productivity, and photosynthesis is circadian-regulated. Here, we discuss the regulatory basis for the circadian control.

Order now
  • You submit your order instructions

  • We assign an appropriate expert

  • The expert takes care of your task

  • We send it to you upon completion

Order now
  • 37 684

    Delivered orders

  • 763

    Professional writers

  • 311

    Writers online

  • 4.8/5

    Average quality score

Order now
  • Kim

    "I have always been impressed by the quick turnaround and your thoroughness. Easily the most professional essay writing service on the web."

  • Paul

    "Your assistance and the first class service is much appreciated. My essay reads so well and without your help I'm sure I would have been marked down again on grammar and syntax."

  • Ellen

    "Thanks again for your excellent work with my assignments. No doubts you're true experts at what you do and very approachable."

  • Joyce

    "Very professional, cheap and friendly service. Thanks for writing two important essays for me, I wouldn't have written it myself because of the tight deadline."

  • Albert

    "Thanks for your cautious eye, attention to detail and overall superb service. Thanks to you, now I am confident that I can submit my term paper on time."

  • Mary

    "Thank you for the GREAT work you have done. Just wanted to tell that I'm very happy with my essay and will get back with more assignments soon."

Ready to tackle your homework?

Place an order