Call us toll-free

Quick academic help

Don't let the stress of school get you down! Have your essay written by a professional writer before the deadline arrives.

Calculate the price

Pages:

275 Words

$19,50

The melatonin hypothesis: electric power and breast cancer

Breast cancer is a disease of modern life. As societies industrialize, risk increases, yet it is unclear which of the myriad changes coming with industrialization drives this increase. One important hallmark of modern life is the pervasive use of electric power. Electric power produces light at night (LAN) and electric and magnetic fields (EMF), either or both of which may alter pineal function and its primary hormone melatonin, thereby, perhaps increasing the risk of breast cancer. This hypothesis, stated a decade ago, is now receiving considerable experimental and epidemiological attention. The circumstantial case for the hypothesis has three aspects: light effects on melatonin, EMF effects on melatonin, and melatonin effects on breast cancer. The strongest of these aspects is the effects of light on melatonin. It is clear that the normal nocturnal melatonin rise in humans can be suppressed by light of sufficient intensity. The evidence for an effect of melatonin on breast cancer in experimental animals is strong, but the evidence in humans is scant and difficult to gather. The weakest aspect of the circumstantial case is EMF effects on melatonin. Whereas a half dozen independent laboratories have published findings of suppression in animals, there are inconsistencies, and there are no published data on humans. The direct evidence bearing on the hypothesis is sparse but provocative. Two laboratories have published data showing substantial increases in chemically induced breast cancer in rats by a weak AC (alternating current) magnetic field. The epidemiological evidence is very limited but has offered some support as well. An effect of electric power on breast cancer would have profound implications, and this possibility deserves continued investigation.

Electric power use and breast cancer: a hypothesis

The growth of estrogen-receptor positive breast cancer cells is inhibited by the pineal gland hormone, melatonin. Concern has been raised that power-line frequency and microwave electromagnetic fields
(EMFs) could reduce the efficiency of melatonin on breast cancer cells. In this study we investigated the impact of EMFs on the signal transduction of the high-affinity receptor MT1 in parental MCF-7 cells and MCF-7 cells transfected with the MT1 gene. The binding of the cAMP-responsive element binding (CREB) protein to a promoter sequence of BRCA-1 after stimulation with melatonin was analyzed by a gel-shift assay and the expression of four estrogen-responsive genes was measured in sham-exposed breast cancer cells and cells exposed to a sinusoidal 50 Hz EMF of 1.2 uT for 48 h. In sham-exposed cells, binding of CREB to the promoter of BRCA-1 was increased by estradiol and subsequently diminished by treatment with melatonin. In cells exposed to 1.2 uT, 50 Hz EMF, binding of CREB was almost completely omitted. Expression of BRCA-1, p53, p21WAF, and c-myc was increased by estradiol stimulation and subsequently decreased by melatonin treatment in both cell lines, except for p53 expression in the transfected cell line, thereby proving the antiestrogenic effect of melatonin at molecular level. In contrast, in breast cancer cells transfected withMT1exposed to 1.2 uT of the 50 Hz EMF, the expression of p53 and c-myc increased significantly after melatonin treatment but for p21WAF the increase was not significant. These results convincingly prove the negative effect of EMF on the antiestrogenic effect of melatonin in breast cancer cells. Bioelectromagnetics 31:237–245, 2010. 2009 Wiley-Liss, Inc.

The Melatonin Hypothesis: Electric Power and Breast Cancer

the Melatonin Hypothesis: Breast Cancer and Use of ..

Luben et al, 1996. Replication of 12 mG EMF effects on melatonin responses of MCF-7 breast cancer cells in vitro. Abstract A-1 of the 1996 Annual review of research on biological effects of electric and magnetic fields from the generation, delivery and use of electricity, November 17-21, 1996. San Antonio, Texas, p.1

Liburdy et al, 1997. Magnetic Fields, Melatonin, Tamoxifen, and Human Breast Cancer Cell Growth. In: Stevens R. G., Wilson B. W., Anderson L.E. (Eds). The Melatonin Hypothesis – Breast Cancer and Use of Electric Power. Battelle Press, Columbus, Richland 1997: 669- 700.

Breast Cancer and Use of Electric Power: …

Get this from a library! The melatonin hypothesis : breast cancer and use of electric power. [Richard G Stevens; Bary W Wilson; Larry E Anderson;]

Breast cancer is a disease of modern life. As societies industrialize, risk increases, yet it is unclear which of the myriad changes coming with industrialization drives this increase. One important hallmark of modern life is the pervasive use of electric power. Electric power produces light at night (LAN) and electric and magnetic fields (EMF), either or both of which may alter pineal function and its primary hormone melatonin, thereby, perhaps increasing the risk of breast cancer. This hypothesis, stated a decade ago, is now receiving considerable experimental and epidemiological attention. The circumstantial case for the hypothesis has three aspects: light effects on melatonin, EMF effects on melatonin, and melatonin effects on breast cancer. The strongest of these aspects is the effects of light on melatonin. It is clear that the normal nocturnal melatonin rise in humans can be suppressed by light of sufficient intensity. The evidence for an effect of melatonin on breast cancer in experimental animals is strong, but the evidence in humans is scant and difficult to gather. The weakest aspect of the circumstantial case is EMF effects on melatonin. Whereas a half dozen independent laboratories have published findings of suppression in animals, there are inconsistencies, and there are no published data on humans. The direct evidence bearing on the hypothesis is sparse but provocative. Two laboratories have published data showing substantial increases in chemically induced breast cancer in rats by a weak AC (alternating current) magnetic field. The epidemiological evidence is very limited but has offered some support as well. An effect of electric power on breast cancer would have profound implications, and this possibility deserves continued investigation.

RICHARD G. STEVENS; ELECTRIC POWER USE AND BREAST CANCER: A HYPOTHESIS, American Journal of Epidemiology, Volume 125, Issue 4, 1 April 1987, Pages 556–561, htt
Order now
  • UNMATCHED QUALITY

    As soon as we have completed your work, it will be proofread and given a thorough scan for plagiarism.

  • STRICT PRIVACY

    Our clients' personal information is kept confidential, so rest assured that no one will find out about our cooperation.

  • COMPLETE ORIGINALITY

    We write everything from scratch. You'll be sure to receive a plagiarism-free paper every time you place an order.

  • ON-TIME DELIVERY

    We will complete your paper on time, giving you total peace of mind with every assignment you entrust us with.

  • FREE CORRECTIONS

    Want something changed in your paper? Request as many revisions as you want until you're completely satisfied with the outcome.

  • 24/7 SUPPORT

    We're always here to help you solve any possible issue. Feel free to give us a call or write a message in chat.

Order now
  • You submit your order instructions

  • We assign an appropriate expert

  • The expert takes care of your task

  • We send it to you upon completion

Order now
  • 37 684

    Delivered orders

  • 763

    Professional writers

  • 311

    Writers online

  • 4.8/5

    Average quality score

Order now
  • Kim

    "I have always been impressed by the quick turnaround and your thoroughness. Easily the most professional essay writing service on the web."

  • Paul

    "Your assistance and the first class service is much appreciated. My essay reads so well and without your help I'm sure I would have been marked down again on grammar and syntax."

  • Ellen

    "Thanks again for your excellent work with my assignments. No doubts you're true experts at what you do and very approachable."

  • Joyce

    "Very professional, cheap and friendly service. Thanks for writing two important essays for me, I wouldn't have written it myself because of the tight deadline."

  • Albert

    "Thanks for your cautious eye, attention to detail and overall superb service. Thanks to you, now I am confident that I can submit my term paper on time."

  • Mary

    "Thank you for the GREAT work you have done. Just wanted to tell that I'm very happy with my essay and will get back with more assignments soon."

Ready to tackle your homework?

Place an order