Call us toll-free

Quick academic help

Don't let the stress of school get you down! Have your essay written by a professional writer before the deadline arrives.

Calculate the price

Pages:

275 Words

$19,50

Sol-Gel Synthesis of Non-Silica Monolithic Materials - …

N2 - We have designed and synthesized a new functional (amino reactive) highly efficient fluorescent molecular switch (FMS) with a photochromic diarylethene and a rhodamine fluorescent dye. The reactive group in this FMS -N-hydroxysuccinimide ester- allows selective labeling of amino containing molecules or other materials. In ethanolic solutions, the compound displays a large fluorescent quantum yield of 52% and a large fluorescence modulation ratio (94 %) between two states that may be interconverted with red and near-UV light. Silica nanoparticles incorporating the new FMS were prepared and characterized, and their spectroscopic and switching properties were also studied. The dye retained its properties after the incorporation into the silica, thereby allowing lightinduced reversible high modulation of the fluorescence signal of a single particle for up to 60 cycles, before undergoing irreversible photobleaching. Some applications of these particles in fluorescence microscopy are also demonstrated. In particular, subdiffraction images of nanoparticles were obtained, in the focal plane of a confocal microscope.

T1 - Synthesis and characterization of photoswitchable fluorescent silica nanoparticles

N2 - A strategy for production of monodisperse spherical sub-100nm silica particles is demonstrated based on application of a conceptual modification of the classic LaMer model to the Stöber process. Strategies for control of particle properties, including particle size, size distribution, and shape are proposed. The approach demonstrated herein starts from a small number of test experiments and then focuses on adjusting the reaction conditions that control undesirable particle properties of the resulting particles while leaving conditions that dictate desirable properties unchanged. This strategy reduces considerably the number of test experiments required for synthesis of uniform and spherical sub-100nm silica particles compared to other reported methods that utilize a large number of test experiments to define optimized reaction conditions. Synthesis of particles in the size range of 27-100nm with relative standard deviations in size of

Synthesis of Polymer—Mesoporous Silica Nanocomposites

AB - A strategy for production of monodisperse spherical sub-100nm silica particles is demonstrated based on application of a conceptual modification of the classic LaMer model to the Stöber process. Strategies for control of particle properties, including particle size, size distribution, and shape are proposed. The approach demonstrated herein starts from a small number of test experiments and then focuses on adjusting the reaction conditions that control undesirable particle properties of the resulting particles while leaving conditions that dictate desirable properties unchanged. This strategy reduces considerably the number of test experiments required for synthesis of uniform and spherical sub-100nm silica particles compared to other reported methods that utilize a large number of test experiments to define optimized reaction conditions. Synthesis of particles in the size range of 27-100nm with relative standard deviations in size of

Magnetic nanoparticles have emerged as an important class of functional nanostructures with potential applications of magnetic resonance imaging, drug targeting, and bio-conjugation. We have developed a modified sol-gel approach to synthesize stable and well-dispersed magnetic Co@SiO2 nanoparticles with improved control over shell thickness and larger core diameters. These well-defined Co@SiO2 core-shell nanoparticles exhibit useful magnetic properties, and the protective silica shell allows them to be surface modified for bioconjugation for various biomedical applications. The core-shell nanoparticles were characterized by transmission electron microscopy, energy-dispersive spectroscopy, elemental mapping, and the line compositional analyses to demonstrate that uniform individually isolated coreshell nanoparticles are obtained through the improved synthetic route.

Department of Chemistry: Faculty

A strategy for production of monodisperse spherical sub-100nm silica particles is demonstrated based on application of a conceptual modification of the classic LaMer model to the Stöber process. Strategies for control of particle properties, including particle size, size distribution, and shape are proposed. The approach demonstrated herein starts from a small number of test experiments and then focuses on adjusting the reaction conditions that control undesirable particle properties of the resulting particles while leaving conditions that dictate desirable properties unchanged. This strategy reduces considerably the number of test experiments required for synthesis of uniform and spherical sub-100nm silica particles compared to other reported methods that utilize a large number of test experiments to define optimized reaction conditions. Synthesis of particles in the size range of 27-100nm with relative standard deviations in size of

N2 - Magnetic nanoparticles have emerged as an important class of functional nanostructures with potential applications of magnetic resonance imaging, drug targeting, and bio-conjugation. We have developed a modified sol-gel approach to synthesize stable and well-dispersed magnetic Co@SiO2 nanoparticles with improved control over shell thickness and larger core diameters. These well-defined Co@SiO2 core-shell nanoparticles exhibit useful magnetic properties, and the protective silica shell allows them to be surface modified for bioconjugation for various biomedical applications. The core-shell nanoparticles were characterized by transmission electron microscopy, energy-dispersive spectroscopy, elemental mapping, and the line compositional analyses to demonstrate that uniform individually isolated coreshell nanoparticles are obtained through the improved synthetic route.

Order now
  • UNMATCHED QUALITY

    As soon as we have completed your work, it will be proofread and given a thorough scan for plagiarism.

  • STRICT PRIVACY

    Our clients' personal information is kept confidential, so rest assured that no one will find out about our cooperation.

  • COMPLETE ORIGINALITY

    We write everything from scratch. You'll be sure to receive a plagiarism-free paper every time you place an order.

  • ON-TIME DELIVERY

    We will complete your paper on time, giving you total peace of mind with every assignment you entrust us with.

  • FREE CORRECTIONS

    Want something changed in your paper? Request as many revisions as you want until you're completely satisfied with the outcome.

  • 24/7 SUPPORT

    We're always here to help you solve any possible issue. Feel free to give us a call or write a message in chat.

Order now

Green Synthesis of Metallic Nanoparticles via ..

AB - We have designed and synthesized a new functional (amino reactive) highly efficient fluorescent molecular switch (FMS) with a photochromic diarylethene and a rhodamine fluorescent dye. The reactive group in this FMS -N-hydroxysuccinimide ester- allows selective labeling of amino containing molecules or other materials. In ethanolic solutions, the compound displays a large fluorescent quantum yield of 52% and a large fluorescence modulation ratio (94 %) between two states that may be interconverted with red and near-UV light. Silica nanoparticles incorporating the new FMS were prepared and characterized, and their spectroscopic and switching properties were also studied. The dye retained its properties after the incorporation into the silica, thereby allowing lightinduced reversible high modulation of the fluorescence signal of a single particle for up to 60 cycles, before undergoing irreversible photobleaching. Some applications of these particles in fluorescence microscopy are also demonstrated. In particular, subdiffraction images of nanoparticles were obtained, in the focal plane of a confocal microscope.

Mesoporous silica nanoparticles as controlled release …

AB - Magnetic nanoparticles have emerged as an important class of functional nanostructures with potential applications of magnetic resonance imaging, drug targeting, and bio-conjugation. We have developed a modified sol-gel approach to synthesize stable and well-dispersed magnetic Co@SiO2 nanoparticles with improved control over shell thickness and larger core diameters. These well-defined Co@SiO2 core-shell nanoparticles exhibit useful magnetic properties, and the protective silica shell allows them to be surface modified for bioconjugation for various biomedical applications. The core-shell nanoparticles were characterized by transmission electron microscopy, energy-dispersive spectroscopy, elemental mapping, and the line compositional analyses to demonstrate that uniform individually isolated coreshell nanoparticles are obtained through the improved synthetic route.

Zinc Oxide—From Synthesis to Application: A Review - MDPI

To produce better antibacterial water-insoluble nanocomposites of silver (Ag), silver–silicon dioxide (Ag-SiO2) hybrid and silver colloid (Ag-c) nanoparticles (NPs) were studied. Ag-c NPs were synthesized using reduction of AgNO3, and Ag-SiO2 composites were prepared on a core of silica NPs functionalized with ethylenediamino-propyltrimethoxysilane, where Ag clusters were fabricated on amino groups using seed-mediated growth and characterized by transmission electron microscopy and ultraviolet-visible absorption spectroscopy. Antibacterial, effectiveness of the Ag-SiO2 NPs was tested against general Escherichia coli (E. coli ATCC 25922) and E. coli O157:H7 by measuring the growth based on optical density and digital counting of live-dead cells using a fluorescent microscope, and a field emission scanning electron microscope. Minimum inhibitory concentration values were studied against four representative bacteria along with E. coli O157:H7. Results showed that Ag NPs of 6.6 ± 4.5 nm were attached to the surface of SiO2 NPs (74 ± 13.5 nm), and the Ag-c NPs (3.5 ± 2 nm) showed excellent antibacterial properties.

Order now
  • You submit your order instructions

  • We assign an appropriate expert

  • The expert takes care of your task

  • We send it to you upon completion

Order now
  • 37 684

    Delivered orders

  • 763

    Professional writers

  • 311

    Writers online

  • 4.8/5

    Average quality score

Order now
  • Kim

    "I have always been impressed by the quick turnaround and your thoroughness. Easily the most professional essay writing service on the web."

  • Paul

    "Your assistance and the first class service is much appreciated. My essay reads so well and without your help I'm sure I would have been marked down again on grammar and syntax."

  • Ellen

    "Thanks again for your excellent work with my assignments. No doubts you're true experts at what you do and very approachable."

  • Joyce

    "Very professional, cheap and friendly service. Thanks for writing two important essays for me, I wouldn't have written it myself because of the tight deadline."

  • Albert

    "Thanks for your cautious eye, attention to detail and overall superb service. Thanks to you, now I am confident that I can submit my term paper on time."

  • Mary

    "Thank you for the GREAT work you have done. Just wanted to tell that I'm very happy with my essay and will get back with more assignments soon."

Ready to tackle your homework?

Place an order