Call us toll-free

Quick academic help

Don't let the stress of school get you down! Have your essay written by a professional writer before the deadline arrives.

Calculate the price


275 Words


Synthesis of copper ferrite nanoparticles | SpringerLink

Scheme 1. A generalized scheme for synthesis of 2,4,5-tri substituted imidazoles in presence of copper nano ferrite by cyclocondensation of benzil, aromatic aldehyde and ammonium acetate under ultra sound irradiation.

 Synthesis and magnetic characterization of nickel substituted cobalt ferrite nanoparticles

Presentation Summary : of nanoparticles for inhalation exposure studies ... copper, cobalt ... controlled synthesis of nanoparticles for inhalation exposure studies m. miettinen1, ...

Synthesis of copper ferrite nanoparticles

Nano Copper Ferrite Catalyzed Sonochemical, One-Pot Three and Four Component Synthesis of Poly Substituted Imidazoles

Pseudospherical copper ferrite particles 20 to 90 nm in average size were prepared by an aerosol method through condensation of iron and copper vapors in an inert-gas flow, followed by the oxidation of the resulting two-phase powder under heterogeneous combustion conditions to an almost single-phase product. The nanoparticles were characterized by scanning electron microscopy, X-ray diffraction, BET measurements, and vibrating-sample magnetometry. Analysis of the X-ray diffraction data and the behavior of the magnetization of reaction intermediates and final synthesis products in the range 400–1100 K made it possible to propose models for the nanostructure of the particles and establish the likely sequence of the observed phase transformations.

Synthesis of Nickel Ferrite NiFe 2 O 4 to calcinations at 550°C for 2.5 h in furnace, finally size was observed to increase with higher sintering

Synthesis of Nickel Ferrite NiFe2O4 Nanoparticles/PVA

The mechanism involved in the biosynthesis of cobalt ferrite nanoparticles has also been discussed.      Copyright (c) 2012 Anal K.

Linker molecules can control the binding orientations of ligands, thus, bioconjugation via linker chemistry is preferred over direct conjugation strategies for the attachment of targeting moieties to nanoparticles. Antibodies, peptides, and small molecules may be conjugated to nanoparticles using a variety of linkers. The most common linker chemistry relies on the reaction between amine-modified nanoparticles and sulfhydryl-containing biomolecules. Cysteine residues may be present or introduced into proteins and peptides, or the peptide may be chemically modified to gain this functionality. For example, the primary amine groups of lysine residues can be thiolated using Traut's reagent (2-iminothiolane) or SATA (-succinimidyl s-acetylthioacetate). This bioconjugation strategy has employed a variety of linker molecules, including SIA (-succinimidyl iodoacetate), SMCC (succinimidyl-4-(-maleimidomethyl) cyclohexane-1-carboxylate), SPDP (-succinimidyl-3-(2-pyridyldithio)-propionate), or heterobifunctional PEG molecules (NHS-PEG-MAL). Heterobifunctional linker molecules include amine-reactive succinimidyl esters in one region of the molecule and thiol-reactive iodoacetate, maleimide, or pyridyldithio groups on the other end. The reaction methods can form covalent complexes between nanoparticles and ligands, thereby requiring stepwise nanoparticle modification prior to ligand attachment or purification between each step []. Carboxyl group-presenting nanoparticles may be covalently bonded to amine group-bearing functional moieties through EDC/NHS linkers, which form an amide linkage. This approach is effective for the attachment of molecules that have a single amine group, although it is difficult to control the binding orientations of ligands with multiple amines, often leading to loss of functionality of the targeting ligands.

Recently, Chen and Sun used the Mannich reaction to couple biomolecules to nanoparticles []. In this work, iron oxide nanoparticles functionalized with active hydrogen groups were reacted with amine group-containing cyclic RGD peptides to develop ultrasmall c(RGDyK)-coated Fe3O4 nanoparticles (with an 8.4 ± 1.0 nm hydrodynamic diameter) as tumor-targeted imaging agents. Nonspecific uptake of the iron oxide nanoparticles by RES in the blood stream complicates the development of small biocompatible nanoparticles with targeting capabilities. Initially, they synthesized Fe3O4 nanoparticles via the thermal decomposition of Fe(CO)5 in benzyl ether in the presence of 4-methylcatecol, as a surfactant, followed by air oxidation. The 4-methylcatecol formed a tight thin coating layer over the nanoparticle surface via formation of a strong chelating bond between the iron and the catechol unit. The aromatic ring of the 4-methylcatecol on the nanoparticles was directly coupled with the amine group of a lysine residue in the cyclic RGD peptide, c(RGDyK) (Figure ). High-resolution transmission electron microscopy (HRTEM) images of the nanoparticles indicated an iron oxide core size of 4.5 nm and a coating layer containing the c(RGDyK) peptide 2 nm in thickness, close to the size in water.

Effect of Substitutions and Sintering AIDS on Structural and Electromagnetic Properties of NiCuZn Ferrite
Order now

    As soon as we have completed your work, it will be proofread and given a thorough scan for plagiarism.


    Our clients' personal information is kept confidential, so rest assured that no one will find out about our cooperation.


    We write everything from scratch. You'll be sure to receive a plagiarism-free paper every time you place an order.


    We will complete your paper on time, giving you total peace of mind with every assignment you entrust us with.


    Want something changed in your paper? Request as many revisions as you want until you're completely satisfied with the outcome.

  • 24/7 SUPPORT

    We're always here to help you solve any possible issue. Feel free to give us a call or write a message in chat.

Order now

facile synthesis technology of copper ferrites anchored on ..

Stable linkages between nanoparticles and functional moieties may be provided by iodoacetate linkers. Using this linker, Zhang synthesized a CTX-mediated brain tumor targeting magnetic/optical nanoprobe []. As shown in Figure , amine-functionalized nanoparticles were prepared by synthesizing a PEG-grafted chitosan polymer. Methoxy-PEG was oxidized to yield PEG-aldehyde, which was then reacted with the primary amines of depolymerized chitosan by formation of a Schiff base. Subsequently, iron oxide nanoparticles were coated with a PEGylated chitosan-branched copolymer (NPCP). SATA-pretreated CTX was then conjugated to the nanoparticles via an SIA cross-linker. The nanoparticles were linked to fluorescence imaging dyes by conjugating the amine groups remaining on the iron oxide nanoparticles to a Cy5.5 NHS ester, producing NPCP-Cy5.5-CTX as a brain tumor targeting magnetic/optical nanoprobe.

Copper Ferrite Nanocrystals via ..

(A) Schematic representation of the transferrin targeted nanoparticle system. (B) Confocal images of post-treatment biopsy sections from patients A, B, and C. Left, Au-PEG-AD stain; middle, DAPI stain; right, merged images. The abbreviations are as follows: epi, epidermis, m; melanophage; s, skin side; t, tumor side. (C) qRT-PCR and western blot analysis of RRM2 protein expression in patient samples C2pre and C2post. The asterisk denotes the archived samples; the dagger denotes the samples obtained during the trial. Reproduced with permission from ref. [].

Copper ferrite supported gold nanoparticles ..

Riboflavin is an essential vitamin for cellular metabolism, and the riboflavin carrier protein (RCP) is highly upregulated in metabolically active cells [,]. Thus, flavin mononucleotide (FMN), an endogenous RCP ligand, was used as a small molecule targeting ligand for metabolically active cancer or endothelial cells. Kiessling and co-workers synthesized FMN-coated ultrasmall superparamagnetic iron oxide nanoparticles (FLUSPIO) as MRI/optical dual probes for cancer detection []. USPIO was coated with FMN through the phosphate groups of FMN, and guanosine monophosphate was added to stabilize the colloid. The hydrodynamic radius of FLUSPIO was 97 ± 3 nm, and an intense fluorescence emission band was observed at 530 nm due to FMN. cellular uptake of FLUSPIO was investigated by MRI (3T), TEM, and fluorescence microscopy of PC3 cells and HUVEC cells. Both PC3 cells and HUVEC cells showed a significantly higher R2 relaxation rate after 1 h incubation with FLUSPIO than with nontargeted USPIO. Such an uptake was considerably reduced by competitive blocking of RCP with free FMN. A strong green fluorescence in the cells was observed after FLUSPIO incubation. The perinuclear fluorescence signal suggested endosomal localization of the nanoparticles, consistent with TEM results, suggesting that FMN could serve as a versatile building block for generating tumor-targeted imaging and therapeutic modalities.

on the antimicrobial properties of copper ..

Li . designed folate receptor-targeted hollow gold nanospheres carrying siRNA recognizing NF-B, a transcription factor related to the expression of genes involved in tumor development [,]. In this case, the photothermal effects of gold nanospheres were utilized to regulate drug release and as a therapeutic tool. Core/shell-structured hollow gold nanospheres (HAuNS, 40 nm) were initially synthesized, consisting of a thin gold wall with a hollow interior, and the structures displayed strong surface plasmon resonance (SPR) tunability in the near-IR region [-]. Thiol-modified siRNA duplexes directed toward the NF-B p65 subunit were then introduced to the surface of HAuNS. Folates were coupled to the nanoparticles through a thioctic acid-terminated PEG linker to produce F-PEG-HAuNS-siRNA (Figure A and B). Irradiation with a pulsed near-IR laser (800 nm) altered the absorption spectra of the HAuNS-siRNA solutions significantly, indicating a loss in the structural integrity and triggering the dissociation of siRNA from HAuNS, when demonstrated by TEM and fluorescence microscopy images. This mode of action is termed 'photothermal transfection'. Intravenous injection of the nanospheres into HeLa xenografts resulted in the distinct downregulation of the NF-B p65 subunit only for the folate-conjugated nanosphere treatment combined with near-IR laser irradiation, suggesting that selective targeting and endolysosomal escape of the nanoparticles was activated by near-IR irradiation at the tumor site. tests, in which therapy was combined with administration of irinotecan, a chemotherapeutic agent that increases sensitivity to NF-B inhibition, yielded a substantially enhanced apoptotic response (Figure C). micro-positron emission tomography (PET))/computed tomography (CT) imaging also confirmed the folate-mediated tumor-targeted theranostic properties of the nanostructures (Figure D). Although significant uptake of the nanoparticles was observed in the liver, spleen, kidney, and lung, no significant downregulation of p65 in these organs was observed as a result of the tumor-selective near-IR irradiation.

Order now
  • You submit your order instructions

  • We assign an appropriate expert

  • The expert takes care of your task

  • We send it to you upon completion

Order now
  • 37 684

    Delivered orders

  • 763

    Professional writers

  • 311

    Writers online

  • 4.8/5

    Average quality score

Order now
  • Kim

    "I have always been impressed by the quick turnaround and your thoroughness. Easily the most professional essay writing service on the web."

  • Paul

    "Your assistance and the first class service is much appreciated. My essay reads so well and without your help I'm sure I would have been marked down again on grammar and syntax."

  • Ellen

    "Thanks again for your excellent work with my assignments. No doubts you're true experts at what you do and very approachable."

  • Joyce

    "Very professional, cheap and friendly service. Thanks for writing two important essays for me, I wouldn't have written it myself because of the tight deadline."

  • Albert

    "Thanks for your cautious eye, attention to detail and overall superb service. Thanks to you, now I am confident that I can submit my term paper on time."

  • Mary

    "Thank you for the GREAT work you have done. Just wanted to tell that I'm very happy with my essay and will get back with more assignments soon."

Ready to tackle your homework?

Place an order