Call us toll-free

Quick academic help

Don't let the stress of school get you down! Have your essay written by a professional writer before the deadline arrives.

Calculate the price

Pages:

275 Words

$19,50

C4 Plants, Examples, and C4 Families


C4 photosynthesis has evolved among land plants a number of times and there are several versions of it. We will learn the NADP-malic enzyme type, which is present in maize, sugarcane, sorghum, and crabgrass, among others.

There is also evidence for the exhibiting of inducible C 4 photosynthesis by non-kranz ..

Over the past 5 years, several billion dollars have been invested in bioenergy research asa means to offset the USdependence on oil and reduce greenhouse gas emissions (Ohlrogge et al., 2009). In a highly cited report by the U.S. Department ofEnergy(Perlacketal.,2005),severalgrasseswereidentified as potential feedstocks for a lignocellulosic fuel industry. Interestingly, of the top seven grasses named (maize, sorghum, M. x giganteus, switchgrass, big bluestem, Arundo donax, and reed canary grass), five use C4 photosynthesis. Thus, the primary targets of the biofuels feedstocks community (cellulose, lignin, and hemicellulose) are the products of C4 photosynthesis. Insummary,thereisacriticalneedtounderstandthenetworks underlying C4 photosynthetic differentiation as a foundation for engineering these traits into rice and for manipulating existing

C3 and C4 photosynthesis | EARTH 131: Food

• The effect of free-air CO2 enrichment (FACE) on the photosynthetic development of the C4 crop Sorghum bicolor was monitored.

C4 photosynthesis drives productivity in several major food crops and bioenergy grasses, including maize (Zea mays), sugarcane (Saccharum officinarum), sorghum (Sorghum bicolor), Miscanthus x giganteus, and switchgrass (Panicum virgatum). Gains in productivity associated with C4 photosynthesis include improved water and nitrogen use efficiencies. Thus, engineering C4 traits into C3 crops is an attractive target for crop improvement. However, the lack of a small, rapid cycling genetic model system to study C4 photosynthesis has limited progress in dissecting the regulatory networks underlying the C4 syndrome. Setaria viridis is a member of the Panicoideae clade and is a close relative of several major feed, fuel, and bioenergy grasses. It is a true diploid with a relatively small genome of ;510 Mb. Its short stature, simple growth requirements, and rapid life cycle will greatly facilitate genetic studies of the C4 grasses. Importantly, S. viridis uses an NADP-malic enzyme subtype C4 photosynthetic system to fix carbon and therefore is a potentially powerful model system for dissecting C4 photosynthesis. Here, we summarize some of the recent advances that promise greatly to accelerate the use of S. viridis as a genetic system. These include our recent successful efforts at regenerating plants from seed callus, establishing a transient transformation system, and developing stable transformation.

Some predict positive impacts on agriculture from climate change like increased temperatures and higher carbon dioxide levels []. Increased concentrations of CO2 may boost crop productivity, only where moisture is not a constraint. Higher levels of CO2 can stimulate photosynthesis in certain plants (30-100 per cent). Experimental observations confirm that when plants absorb more carbon grow bigger and more quickly. This is particularly true for C3 plants (so called because the product of their first biochemical reactions during photosynthesis has three carbon atoms). Increased CO2 tends to suppress photo-respiration in these plants, making them more water-efficient. The response of C4 plants would not be as dramatic. C3 plants correspond to mid-latitude food staples like wheat, rice and soy bean whereas C4 plants correspond to low-altitude crops like maize, sorghum & sugarcane. The impact on yields of low-latitude crops is more difficult to predict while the mid-latitude yields may be reduced by 10-30 per cent due to increased summer dryness. The effects of an increase in carbon dioxide would be higher on C3 crops (such as wheat) than on C4 crops (such as maize), because the former is more susceptible to carbon dioxide shortage. Moreover, the protein content of the grain decreases under combined increases of temperature and CO2. For rice, the amylase content of the grain-a major determinant of cooking quality-is increased under elevated CO2. With wheat, elevated CO2 reduces the protein content of grain and flour by 9-13%. Concentrations of Fe and Zn which are important for human nutrition would be lower.

Examples of C4 plants include corn, sorghum ..

24/01/2012 · 'C4 photosynthesis', as used by maize and sorghum, could greatly boost rice yields, after a decade of slowing improvements

AB - The developmental pattern of C4 expression has been well characterized in maize and other C4 plants. However, few reports have explored the possibility that the development of this pathway may be sensitive to changes in atmospheric CO2 concentrations. Therefore, both the structural and biochemical development of leaf tissue in the fifth leaf of Sorghum bicolor plants grown at elevated CO2 have been characterized. Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) and phosphoenol-pyruvate carboxylase (PEPC) activities accumulate rapidly as the leaf tissue differentiates and emerges from the surrounding whorl. Rubisco was not expressed in a cell-specific manner in the youngest tissue at the base of the leaf, but did accumulate before PEPC was detected. This suggests that the youngest leaf tissue utilizes a C3-like pathway for carbon fixation. However, this tissue was in a region of the leaf receiving very low light and so significant rates of photosynthesis were not likely. Older leaf tissue that had emerged from the surrounding whorl into full sunlight showed the normal C4 syndrome. Elevated CO2 had no effect on the cell-specific localization of Rubisco or PEPC at any stage of leaf development, and the relative ratios of Rubisco to PEPC remained constant during leaf development. However, in the oldest tissue at the tip of the leaf, the total activities of Rubisco and PEPC were decreased under elevated CO2 implying that C4 photosynthetic tissue may acclimate to growth under elevated CO2.

N2 - The developmental pattern of C4 expression has been well characterized in maize and other C4 plants. However, few reports have explored the possibility that the development of this pathway may be sensitive to changes in atmospheric CO2 concentrations. Therefore, both the structural and biochemical development of leaf tissue in the fifth leaf of Sorghum bicolor plants grown at elevated CO2 have been characterized. Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) and phosphoenol-pyruvate carboxylase (PEPC) activities accumulate rapidly as the leaf tissue differentiates and emerges from the surrounding whorl. Rubisco was not expressed in a cell-specific manner in the youngest tissue at the base of the leaf, but did accumulate before PEPC was detected. This suggests that the youngest leaf tissue utilizes a C3-like pathway for carbon fixation. However, this tissue was in a region of the leaf receiving very low light and so significant rates of photosynthesis were not likely. Older leaf tissue that had emerged from the surrounding whorl into full sunlight showed the normal C4 syndrome. Elevated CO2 had no effect on the cell-specific localization of Rubisco or PEPC at any stage of leaf development, and the relative ratios of Rubisco to PEPC remained constant during leaf development. However, in the oldest tissue at the tip of the leaf, the total activities of Rubisco and PEPC were decreased under elevated CO2 implying that C4 photosynthetic tissue may acclimate to growth under elevated CO2.

TY - JOUR. T1 - Development of C4 photosynthesis in sorghum leaves grown under free-air CO2 enrichment (FACE) AU - Cousins,A. B. AU - Adam,N. R.
Order now
  • UNMATCHED QUALITY

    As soon as we have completed your work, it will be proofread and given a thorough scan for plagiarism.

  • STRICT PRIVACY

    Our clients' personal information is kept confidential, so rest assured that no one will find out about our cooperation.

  • COMPLETE ORIGINALITY

    We write everything from scratch. You'll be sure to receive a plagiarism-free paper every time you place an order.

  • ON-TIME DELIVERY

    We will complete your paper on time, giving you total peace of mind with every assignment you entrust us with.

  • FREE CORRECTIONS

    Want something changed in your paper? Request as many revisions as you want until you're completely satisfied with the outcome.

  • 24/7 SUPPORT

    We're always here to help you solve any possible issue. Feel free to give us a call or write a message in chat.

Order now

Photorespiration and C4 Plants - Biology Pages

C4 photosynthesis is the primary mode of carbon capture for some of the world’s most important food, feed, and fuel crops, including maize (Zea mays), sorghum (Sorghum bicolor), sugarcane (Saccharum officinarum), millets (e.g. Panicum miliaceum, Pennisetum glaucum, and Setaria italica), Miscanthus x gigan- teus, and switchgrass (Panicum virgatum). In contrast with C3 plants, C4 plants first fix CO2 into a C4 acid before delivering the CO2totheCalvincycle(HatchandSlack,1966;Hatch,1971).For example, in maize and sorghum leaves, CO2 entering mesophyll (M) cells is first fixed into oxaloacetate, which is then reduced to malate in the M chloroplasts. The malate then diffuses into the inner bundle sheath (BS) cells and is transported into the BS chloroplast. There, malate is decarboxylated by NADP-malic enzyme, releasing CO2 close to ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco). This carbon shuttle greatly lowers rates of photorespiration as Rubisco is both isolated from the site of O2 evolution (oxygen evolving complex of photosys- tem I) and also maintained in a CO2-rich environment. Indeed, in mature maize or sorghum leaves, rates of photorespiration are at the limits of detection under conditions where C3 plants lose up to 30% of their photosynthetic capacity due to photorespiration

Photorespiration and C4 Plants ..

C4 photosynthesis drives productivity in several major food crops and bioenergy grasses, including maize (Zea mays), sugarcane (Saccharum officinarum), sorghum (Sorghum bicolor), Miscanthus × giganteus, and switchgrass (Panicum virgatum).

C4 plants are responsible for ~25% of all the photosynthesis on land

Relationships based largely on Vicentini et al. (2008) and Christin et al. (2009), showing multiple origins of C4 photosystems. S. viridis is an NADP-ME subtype C4 grass that is closely related to the bioenergy feedstock switchgrass (NAD-ME subtype), the grain crop foxtail millet, and the agricultural weed guinea grass (PCK). The C4 photosynthetic systems in this Setaria/Urochloea/Panicum (SUPa clade, indicated with a yellow star) arose independently from the NADP-ME family members of the Andropononeae (maize, sorghum, sugarcane, and M. x giganteus). Dashed lines show clades with multiple subtypes.

Order now
  • You submit your order instructions

  • We assign an appropriate expert

  • The expert takes care of your task

  • We send it to you upon completion

Order now
  • 37 684

    Delivered orders

  • 763

    Professional writers

  • 311

    Writers online

  • 4.8/5

    Average quality score

Order now
  • Kim

    "I have always been impressed by the quick turnaround and your thoroughness. Easily the most professional essay writing service on the web."

  • Paul

    "Your assistance and the first class service is much appreciated. My essay reads so well and without your help I'm sure I would have been marked down again on grammar and syntax."

  • Ellen

    "Thanks again for your excellent work with my assignments. No doubts you're true experts at what you do and very approachable."

  • Joyce

    "Very professional, cheap and friendly service. Thanks for writing two important essays for me, I wouldn't have written it myself because of the tight deadline."

  • Albert

    "Thanks for your cautious eye, attention to detail and overall superb service. Thanks to you, now I am confident that I can submit my term paper on time."

  • Mary

    "Thank you for the GREAT work you have done. Just wanted to tell that I'm very happy with my essay and will get back with more assignments soon."

Ready to tackle your homework?

Place an order