Call us toll-free

Quick academic help

Don't let the stress of school get you down! Have your essay written by a professional writer before the deadline arrives.

Calculate the price

Pages:

275 Words

$19,50

What is a primary electron acceptor and what does it …

Reaction centers were found to bind two ubiquinones, both of which could be removed by o-phenanthroline and the detergent lauryldimethylamine oxide. One ubiquinone was more easily removed than the other. The low-temperature light-induced optical and electron paramagnetic resonance (EPR) changes were eliminated and restored upon removal and readdition of ubiquinone and were quantitatively correlated with the amount of tightly bound ubiquinone. We, therefore, conclude that this ubiquinone plays an obligatory role in the primary photochemistry. The easily removed ubiquinone is thought to be the secondary electron acceptor. The low-temperature charge recombination kinetics, as well as the optical and EPR spectra, were the same for untreated reaction centers and for those reconstituted with ubiquinone. This indicates that extraction and reconstitution were accomplished without altering the conformation of the active site. Reaction centers reconstituted with other quinones also showed restored photochemical activity, although they exhibited changes in their low-temperature recombination kinetics and light-induced (g = 1.8) EPR signal is interpreted in terms of a magnetically coupled ubiquinone--Fe2+ acceptor complex. A possible role of iron is to facilitate electron transfer between the primary and secondary ubiquinones.

The primary electron acceptor in photosynthesis

glycolysis does not provide as much energy as aerobic respiration, indeed in aerobic
respiration, pyruvate produced by glycoslysis is further oxidised by the Kreb's cycle and by the ETS, involving oxygen as the
final oxidant or terminal electron acceptor.

the chlorophyll a to be passed to a primary electron acceptor.

Second, photosystem I can switch to a cyclic operation where  complex serves as the electron acceptor instead of .

Introduction to nanotechnology, the size of things, history of nanotechnology, fabrication methods - top-down and bottoms-up, emerging applications of nanotechnology; Physics at the nanoscale, review of electrodynamics, overview of quantum mechanics and statistical mechanics, electrons and photons, wave-particle duality, electron in potential wells, tunneling, scattering of electrons and photons; Semi-classical treatment of light-matter interactions, Electron transport at the nanoscale - Moore’s law and device size scaling, fundamental limits of CMOS technology, field effect transistors, conventional MOSFET, ballistic FETs, FinFETs, single electron transistors, quantum dots photonics at the nanoscale, diffraction limit of light, optoelectronic integration, photonic crystals, surface plasmons, metamaterials, nanoantenna and optical circuits, enhanced light-matter interaction with nanoantennae; applications in sensors, energy harvesting, information processing, quantum computing.

Atomic Structure, periodic trends, oxidation states, atomic & ionic radii, electron affinity, ionization energy, electronegativity; Oxidation-reduction chemistry; Structures and energetics of Inorganic Solids; Molecular orbital theory; Acid-Base and donor-acceptor chemistry; Coordination chemistry, structures and isomers, bonding, electronic Spectra; Organometallic Chemistry; Chemistry of the Main Group Elements; Nanomaterials, nanoscience, and nanotechnology; Bioinorganic and environmental chemistry.

what is a primary acceptor in photosynthesis? | Yahoo …

-Some of the energy released during electron transfer from the primary electron acceptor for ..

Analysisoffictional texts from the subcontinent with focus on the temporal, geographical, and ideological tropes: The selected novels based on Srilankan, Bangladeshi, Indian, Pakistani, Buremese, and Nepalese regions; Enquiry into the question of “South-Asia” as a collective entity; The course content will highlight cultural-philosophical and literary elements in the novelistic medium.


Iron slats may be used, in which iron ions are reduced to elemental iron; this occurs in many bacteria living on the surface of
rocks, such as in deserts, in which electrons from the ETS travel down pili, acting as nanowires, to the iron-salt containing
rocks on which the bacteria grow, so that the final electron acceptor is actually outside the cell.

10/04/2009 · What is a primary acceptor in photosynthesis
Order now
  • UNMATCHED QUALITY

    As soon as we have completed your work, it will be proofread and given a thorough scan for plagiarism.

  • STRICT PRIVACY

    Our clients' personal information is kept confidential, so rest assured that no one will find out about our cooperation.

  • COMPLETE ORIGINALITY

    We write everything from scratch. You'll be sure to receive a plagiarism-free paper every time you place an order.

  • ON-TIME DELIVERY

    We will complete your paper on time, giving you total peace of mind with every assignment you entrust us with.

  • FREE CORRECTIONS

    Want something changed in your paper? Request as many revisions as you want until you're completely satisfied with the outcome.

  • 24/7 SUPPORT

    We're always here to help you solve any possible issue. Feel free to give us a call or write a message in chat.

Order now

What is the final electron acceptor in photosynthesis?

Chlorophyll fluorescence emission at 680 nm (F680) and the rate of CO2 fixation were measured simultaneously in sections along the length of wheat and maize leaves. These leaves possess a basal meristem and show a gradation in development towards the leaf tip. The redox state of the primary electron acceptor, Q, of photosystem II was estimated using a non-invasive method. Distal mature leaf sections displayed typical F680 induction curves which were generally anti-parallel with CO2 fixation and during which Q became gradually oxidised. In leaf-base sections net assimilation of CO2 was not detectable, F680 quenched slowly and monotonously without displaying any of the oscillations typical of mature tissue and Q remained relatively reduced. Sections cut from mid-regions of the leaf showed intermediate characteristics. There were no major differences between the wheat and maize leaf in the parameters measured. The results support the hypothesis that generation of the transthylakoid proton gradient and associated ATP production is not a major limitation to photosynthesis during leaf development in either C3 or C4 plants. Removal of CO2 from the mature leaf sections caused little change in steady-state F680 and produced about 50% reduction of Q. When O2 was then removed, F680 rose sharply and Q became almost totally reduced. In immature tissue unable to assimilate CO2, removal of O2 alone caused a similar large rise in F680 and reduction of Q whilst removal of CO2 had negligible effects on F680 and the redox state of Q. It is concluded that in leaf tissue unable to assimilate CO2, either because CO2 is absent or the tissue is immature, O2 acts as an electron acceptor and maintains Q in a partially oxidised state. The important implication that O2 may have a role in the prevention of photoinhibition of the photochemical apparatus in the developing leaf is discussed.

Primary acceptor during the light reaction of photosynthesis?

The protein complex that constitutes Photosystem I contains eleven , six of which are coded in the nucleus and five are coded in the . The core of Photosystem I contains about 40 molecules of chlorophyll a, several molecules of beta carotene, lipids, four manganese, one iron, several calcium, several chlorine, two molecules of plastoquinone, and two molecules of pheophytin, a colorless form of chlorophyll a .(Moore, et al.)

Electron acceptor - Biology-Online Dictionary

N2 - Chlorophyll fluorescence emission at 680 nm (F680) and the rate of CO2 fixation were measured simultaneously in sections along the length of wheat and maize leaves. These leaves possess a basal meristem and show a gradation in development towards the leaf tip. The redox state of the primary electron acceptor, Q, of photosystem II was estimated using a non-invasive method. Distal mature leaf sections displayed typical F680 induction curves which were generally anti-parallel with CO2 fixation and during which Q became gradually oxidised. In leaf-base sections net assimilation of CO2 was not detectable, F680 quenched slowly and monotonously without displaying any of the oscillations typical of mature tissue and Q remained relatively reduced. Sections cut from mid-regions of the leaf showed intermediate characteristics. There were no major differences between the wheat and maize leaf in the parameters measured. The results support the hypothesis that generation of the transthylakoid proton gradient and associated ATP production is not a major limitation to photosynthesis during leaf development in either C3 or C4 plants. Removal of CO2 from the mature leaf sections caused little change in steady-state F680 and produced about 50% reduction of Q. When O2 was then removed, F680 rose sharply and Q became almost totally reduced. In immature tissue unable to assimilate CO2, removal of O2 alone caused a similar large rise in F680 and reduction of Q whilst removal of CO2 had negligible effects on F680 and the redox state of Q. It is concluded that in leaf tissue unable to assimilate CO2, either because CO2 is absent or the tissue is immature, O2 acts as an electron acceptor and maintains Q in a partially oxidised state. The important implication that O2 may have a role in the prevention of photoinhibition of the photochemical apparatus in the developing leaf is discussed.

Order now
  • You submit your order instructions

  • We assign an appropriate expert

  • The expert takes care of your task

  • We send it to you upon completion

Order now
  • 37 684

    Delivered orders

  • 763

    Professional writers

  • 311

    Writers online

  • 4.8/5

    Average quality score

Order now
  • Kim

    "I have always been impressed by the quick turnaround and your thoroughness. Easily the most professional essay writing service on the web."

  • Paul

    "Your assistance and the first class service is much appreciated. My essay reads so well and without your help I'm sure I would have been marked down again on grammar and syntax."

  • Ellen

    "Thanks again for your excellent work with my assignments. No doubts you're true experts at what you do and very approachable."

  • Joyce

    "Very professional, cheap and friendly service. Thanks for writing two important essays for me, I wouldn't have written it myself because of the tight deadline."

  • Albert

    "Thanks for your cautious eye, attention to detail and overall superb service. Thanks to you, now I am confident that I can submit my term paper on time."

  • Mary

    "Thank you for the GREAT work you have done. Just wanted to tell that I'm very happy with my essay and will get back with more assignments soon."

Ready to tackle your homework?

Place an order