Call us toll-free

Quick academic help

Don't let the stress of school get you down! Have your essay written by a professional writer before the deadline arrives.

Calculate the price

Pages:

275 Words

$19,50

Support or Reject Null Hypothesis

The null hypothesis is a statement that you want to test. In general, the null hypothesis is that things are the same as each other, or the same as a theoretical expectation. For example, if you measure the size of the feet of male and female chickens, the null hypothesis could be that the average foot size in male chickens is the same as the average foot size in female chickens. If you count the number of male and female chickens born to a set of hens, the null hypothesis could be that the ratio of males to females is equal to a theoretical expectation of a 1:1 ratio.

Click the link the skip to the situation you need to support or reject null hypothesis for:

You should decide whether to use the one-tailed or two-tailed probability before you collect your data, of course. A one-tailed probability is more powerful, in the sense of having a lower chance of false negatives, but you should only use a one-tailed probability if you really, truly have a firm prediction about which direction of deviation you would consider interesting. In the chicken example, you might be tempted to use a one-tailed probability, because you're only looking for treatments that decrease the proportion of worthless male chickens. But if you accidentally found a treatment that produced 87% male chickens, would you really publish the result as "The treatment did not cause a significant decrease in the proportion of male chickens"? I hope not. You'd realize that this unexpected result, even though it wasn't what you and your farmer friends wanted, would be very interesting to other people; by leading to discoveries about the fundamental biology of sex-determination in chickens, in might even help you produce more female chickens someday. Any time a deviation in either direction would be interesting, you should use the two-tailed probability. In addition, people are skeptical of one-tailed probabilities, especially if a one-tailed probability is significant and a two-tailed probability would not be significant (as in our chocolate-eating chicken example). Unless you provide a very convincing explanation, people may think you decided to use the one-tailed probability after you saw that the two-tailed probability wasn't quite significant, which would be cheating. It may be easier to always use two-tailed probabilities. For this handbook, I will always use two-tailed probabilities, unless I make it very clear that only one direction of deviation from the null hypothesis would be interesting.

Support or Reject Null Hypothesis in Easy Steps

Use these general guidelines to decide if you should reject or keep the null:

This criticism only applies to two-tailed tests, where the null hypothesis is "Things are exactly the same" and the alternative is "Things are different." Presumably these critics think it would be okay to do a one-tailed test with a null hypothesis like "Foot length of male chickens is the same as, or less than, that of females," because the null hypothesis that male chickens have smaller feet than females could be true. So if you're worried about this issue, you could think of a two-tailed test, where the null hypothesis is that things are the same, as shorthand for doing two one-tailed tests. A significant rejection of the null hypothesis in a two-tailed test would then be the equivalent of rejecting one of the two one-tailed null hypotheses.

A fairly common criticism of the hypothesis-testing approach to statistics is that the null hypothesis will always be false, if you have a big enough sample size. In the chicken-feet example, critics would argue that if you had an infinite sample size, it is impossible that male chickens would have exactly the same average foot size as female chickens. Therefore, since you know before doing the experiment that the null hypothesis is false, there's no point in testing it.

How to Determine a p-Value When Testing a Null Hypothesis

Very Informative.I have one doubt, why we always interested in Rejecting null hypothesis?

Sometimes, you’ll be given a proportion of the population or a percentage and asked to support or reject null hypothesis. In this case you can’t compute a test value by calculating a (you need actual numbers for that), so we use a slightly different technique.

Sample question: A researcher claims that Democrats will win the next election. 4300 voters were polled; 2200 said they would vote Democrat. Decide if you should support or reject null hypothesis. Is there enough evidence at α=0.05 to support this claim?

The null hypothesis is only rejected when we have evidence beyond a reasonable doubt that a
Order now
  • UNMATCHED QUALITY

    As soon as we have completed your work, it will be proofread and given a thorough scan for plagiarism.

  • STRICT PRIVACY

    Our clients' personal information is kept confidential, so rest assured that no one will find out about our cooperation.

  • COMPLETE ORIGINALITY

    We write everything from scratch. You'll be sure to receive a plagiarism-free paper every time you place an order.

  • ON-TIME DELIVERY

    We will complete your paper on time, giving you total peace of mind with every assignment you entrust us with.

  • FREE CORRECTIONS

    Want something changed in your paper? Request as many revisions as you want until you're completely satisfied with the outcome.

  • 24/7 SUPPORT

    We're always here to help you solve any possible issue. Feel free to give us a call or write a message in chat.

Order now

of that we can reject the null hypothesis.

Sample question: A researcher claims that more than 23% of community members go to church regularly. In a recent survey, 126 out of 420 people stated they went to church regularly. Is there enough evidence at α = 0.05 to support this claim? Use the P-Value method to support or reject null hypothesis.

Find The Critical Z Value Used To Test A Null Hypothesis?

Compare your answer from step 5 with the α value given in the question. Support or reject the null hypothesis? If step 5 is less than α, reject the null hypothesis, otherwise do not reject it. In this case, .582 (5.82%) is not less than our α, so we do not reject the null hypothesis.

z value used to test a null hypothesis


The hypotheses here will be Let us get the test statistic:
Set up the rejection region by drawing a Z-curve and shade the most extreme 5% of both tails.

Support or reject null hypothesis in general situations.

Compare your to α. Support or reject null hypothesis? If the is less, reject the null hypothesis. If the P-value is more, keep the null hypothesis.
0.003

Null and Alternative Hypothesis | Real Statistics Using …

Watch the video or read the article below:

A p value is used in to help you . The p value is the evidence against a . The smaller the p-value, the strong the evidence that you should reject the null hypothesis.

P-Value in Statistical Hypothesis Tests: What is it?

The p value is just one piece of information you can use when deciding if your is true or not. You can use other values given by your test to help you decide. For example, if you run an, you’ll get a p value, an f-critical value and a .


In the above image, the results from the show a large p value (.244531, or 24.4531%), so you would not reject the null. However, there’s also another way you can decide: compare your f-value with your f-critical value. If the f-critical value is smaller than the f-value, you should reject the null hypothesis. In this particular test, the p value and the f-critical values are both very large so you do not have enough evidence to reject the null.

Order now
  • You submit your order instructions

  • We assign an appropriate expert

  • The expert takes care of your task

  • We send it to you upon completion

Order now
  • 37 684

    Delivered orders

  • 763

    Professional writers

  • 311

    Writers online

  • 4.8/5

    Average quality score

Order now
  • Kim

    "I have always been impressed by the quick turnaround and your thoroughness. Easily the most professional essay writing service on the web."

  • Paul

    "Your assistance and the first class service is much appreciated. My essay reads so well and without your help I'm sure I would have been marked down again on grammar and syntax."

  • Ellen

    "Thanks again for your excellent work with my assignments. No doubts you're true experts at what you do and very approachable."

  • Joyce

    "Very professional, cheap and friendly service. Thanks for writing two important essays for me, I wouldn't have written it myself because of the tight deadline."

  • Albert

    "Thanks for your cautious eye, attention to detail and overall superb service. Thanks to you, now I am confident that I can submit my term paper on time."

  • Mary

    "Thank you for the GREAT work you have done. Just wanted to tell that I'm very happy with my essay and will get back with more assignments soon."

Ready to tackle your homework?

Place an order