Call us toll-free

Quick academic help

Don't let the stress of school get you down! Have your essay written by a professional writer before the deadline arrives.

Calculate the price


275 Words


Scientific Method Ppt | Observation | Experiment

For example, "How canscientists expect us to believe that anything as complex as a singleliving cell could have arisen as a result of random naturalprocesses ?"Actually, pretty well any question has this effect to some extent.

hypothesis-drivenresearch) involves Observation, Hypothesis, Controlled Experiment and Conclusion.

When this happens, the investigator usually gives a which is as neutral as possible, for example, "What do you think of it now?"There are several variants of consulting-type observation.

Observation hypothesis experiment conclusion

Fact: are statements that we know to be true through direct . In everyday usage, facts are a highly valued form of knowledge because we can be so confident in them. Scientific thinking, however, recognizes that, though facts are important, we can only be completely confident about relatively simple statements. For example, it may be a fact that there are three trees in your backyard. However, our knowledge of how all trees are related to one another is not a fact; it is a complex body of knowledge based on many different and reasoning that may change as new is discovered and as old evidence is interpreted in new ways. Though our knowledge of tree relationships is not a fact, it is broadly applicable, useful in many situations, and synthesizes many individual facts into a broader framework. values facts but recognizes that many forms of knowledge are more powerful than simple facts.

The reports from non-systematic observation normally include various kinds ofinformation, for example qualitative descriptions of the circumstances like lighting, weather, disturbances etc.

Observation, Hypothesis, Experiment, Conclusion - …

: In everyday language, a is a rule that must be abided or something that can be relied upon to occur in a particular situation. Scientific laws, on the other hand, are less rigid. They may have exceptions, and, like other scientific knowledge, may be modified or rejected based on new evidence and perspectives. In science, the term usually refers to a generalization about and is a compact way of describing what we'd expect to happen in a particular situation. Some laws are non-mechanistic statements about the relationship among observable phenomena. For example, the ideal gas law describes how the pressure, volume, and temperature of a particular amount of gas are related to one another. It does not describe how gases behave; we know that gases do not precisely conform to the ideal gas law. Other laws deal with phenomena that are not directly observable. For example, the second law of thermodynamics deals with entropy, which is not directly observable in the same way that volume and pressure are. Still other laws offer more mechanistic explanations of phenomena. For example, Mendel's first law offers a of how genes are distributed to gametes and offspring that helps us make about the outcomes of genetic crosses. The term may be used to describe many different forms of scientific knowledge, and whether or not a particular idea is called a law has much to do with its discipline and the time period in which it was first developed.

CORRECTION: Perhaps because the last step of the Scientific Method is usually "draw a conclusion," it's easy to imagine that studies that don't reach a clear conclusion must not be scientific or important. In fact, scientific studies don't reach "firm" conclusions. Scientific articles usually end with a discussion of the limitations of the tests performed and the alternative hypotheses that might account for the phenomenon. That's the nature of scientific knowledge — it's inherently tentative and could be overturned if new evidence, new interpretations, or a better explanation come along. In science, studies that carefully analyze the strengths and weaknesses of the test performed and of the different alternative explanations are particularly valuable since they encourage others to more thoroughly scrutinize the ideas and evidence and to develop new ways to test the ideas. To learn more about publishing and scrutiny in science, visit our discussion of .

Order now

    As soon as we have completed your work, it will be proofread and given a thorough scan for plagiarism.


    Our clients' personal information is kept confidential, so rest assured that no one will find out about our cooperation.


    We write everything from scratch. You'll be sure to receive a plagiarism-free paper every time you place an order.


    We will complete your paper on time, giving you total peace of mind with every assignment you entrust us with.


    Want something changed in your paper? Request as many revisions as you want until you're completely satisfied with the outcome.

  • 24/7 SUPPORT

    We're always here to help you solve any possible issue. Feel free to give us a call or write a message in chat.

Order now

Descriptive Observation and Experiment - UIAH

CORRECTION: When newspapers make statements like, "most scientists agree that human activity is the culprit behind global warming," it's easy to imagine that scientists hold an annual caucus and vote for their favorite hypotheses. But of course, that's not quite how it works. Scientific ideas are judged not by their popularity, but on the basis of the evidence supporting or contradicting them. A hypothesis or theory comes to be accepted by many scientists (usually over the course of several years — or decades!) once it has garnered many lines of supporting evidence and has stood up to the scrutiny of the scientific community. A hypothesis accepted by "most scientists," may not be "liked" or have positive repercussions, but it is one that science has judged likely to be accurate based on the evidence. To learn more about , visit our series of pages on the topic in our section on how science works.

Descriptive Observation and Experiment

When your knowledge about the activity increases, you can easily improve the definitions without much detriment.All the above mentioned viewpoints that can affect the selection of the method of observation are shown compressed in the following table: Although the table contains only three distinct methods, there is always the possibility of combining elements from these methods or of modifying them. Note that the table above contains no research methods, nor observation which is discussed on another page. If we have to study an existing activity that we initially know nothing of, already common sense tells us that it is best to start by just watching what happens, and try to learn the structure of the actions, even if it might take some time.

in the form of systematic observation or experiment.

CORRECTION: This misconception may be reinforced by introductory science courses that treat hypotheses as "things we're not sure about yet" and that only explore established and accepted theories. In fact, hypotheses, theories, and laws are rather like apples, oranges, and kumquats: one cannot grow into another, no matter how much fertilizer and water are offered. Hypotheses, theories, and laws are all scientific explanations that differ in breadth — not in level of support. Hypotheses are explanations that are limited in scope, applying to fairly narrow range of phenomena. The term is sometimes used to refer to an idea about how observable phenomena are related — but the term is also used in other ways within science. Theories are deep explanations that apply to a broad range of phenomena and that may integrate many hypotheses and laws. To learn more about this, visit our page on .

purpose - hypothesis- experiment - results- conclusion;

CORRECTION: This misconception is based on the idea of falsification, philosopher Karl Popper's influential account of scientific justification, which suggests that all science can do is reject, or falsify, hypotheses — that science cannot find evidence that one idea over others. Falsification was a popular philosophical doctrine — especially with scientists — but it was soon recognized that falsification wasn't a very complete or accurate picture of how scientific knowledge is built. In science, ideas can never be completely proved or completely disproved. Instead, science accepts or rejects ideas based on supporting and refuting evidence, and may revise those conclusions if warranted by new evidence or perspectives.

Order now
  • You submit your order instructions

  • We assign an appropriate expert

  • The expert takes care of your task

  • We send it to you upon completion

Order now
  • 37 684

    Delivered orders

  • 763

    Professional writers

  • 311

    Writers online

  • 4.8/5

    Average quality score

Order now
  • Kim

    "I have always been impressed by the quick turnaround and your thoroughness. Easily the most professional essay writing service on the web."

  • Paul

    "Your assistance and the first class service is much appreciated. My essay reads so well and without your help I'm sure I would have been marked down again on grammar and syntax."

  • Ellen

    "Thanks again for your excellent work with my assignments. No doubts you're true experts at what you do and very approachable."

  • Joyce

    "Very professional, cheap and friendly service. Thanks for writing two important essays for me, I wouldn't have written it myself because of the tight deadline."

  • Albert

    "Thanks for your cautious eye, attention to detail and overall superb service. Thanks to you, now I am confident that I can submit my term paper on time."

  • Mary

    "Thank you for the GREAT work you have done. Just wanted to tell that I'm very happy with my essay and will get back with more assignments soon."

Ready to tackle your homework?

Place an order