Call us toll-free

Quick academic help

Don't let the stress of school get you down! Have your essay written by a professional writer before the deadline arrives.

Calculate the price

Pages:

275 Words

$19,50

Insulin does not Stimulate Muscle Protein Synthesis …

N2 - We examined the effects of a combined, local intra-arterial infusion of growth hormone (GH) and insulin on forearm glucose and protein metabolism in seven normal adults. GH was infused into the brachial artery for 6 h with a dose that, in a previous study, stimulated muscle protein synthesis (phenylalanine Rd) without affecting systemic GH, insulin, or insulinlike growth factor I concentrations. For the last 3 h of the GH infusion, insulin was coinfused with a dose that, in the absence of infused GH, suppressed forearm muscle proteolysis by 30-40% without affecting systemic insulin levels. Measurements of forearm glucose, amino acid balance, and [3H]phenylalanine and [14C]leucine kinetics were made at 3 and 6 h of the infusion. Glucose uptake by forearm tissues in response to GH and insulin did not change significantly between 3 and 6 h. By 6 h, the combined infusion of GH and insulin promoted a significantly more positive net balance of phenylalanine, leucine, isoleucine, and valine (all P

Metabolic Actions of Insulin and Glucagon: Fatty acid uptake and release in fat

We examined the effects of a combined, local intra-arterial infusion of growth hormone (GH) and insulin on forearm glucose and protein metabolism in seven normal adults. GH was infused into the brachial artery for 6 h with a dose that, in a previous study, stimulated muscle protein synthesis (phenylalanine Rd) without affecting systemic GH, insulin, or insulinlike growth factor I concentrations. For the last 3 h of the GH infusion, insulin was coinfused with a dose that, in the absence of infused GH, suppressed forearm muscle proteolysis by 30-40% without affecting systemic insulin levels. Measurements of forearm glucose, amino acid balance, and [3H]phenylalanine and [14C]leucine kinetics were made at 3 and 6 h of the infusion. Glucose uptake by forearm tissues in response to GH and insulin did not change significantly between 3 and 6 h. By 6 h, the combined infusion of GH and insulin promoted a significantly more positive net balance of phenylalanine, leucine, isoleucine, and valine (all P d (51%, P a. For leucine, a stimulation of leucine Rd (50%, P a. The stimulation of Rd, in the absence of an observed effect on Ra, suggests that GH blunts the action of insulin to suppress proteolysis in addition to blunting insulin's action on Rd.

Does Insulin and Leucine Stimulate Muscle Protein Synthesis?

Insulin does not Stimulate Muscle Protein Synthesis during Increased Plasma Branched-chain Amino ..

Insulin is the major hormone controlling critical energy functions such as glucose and lipid metabolism. Insulin elicits a diverse array of biological responses by binding to its specific receptor (Ref.1). The insulin receptor belongs to a subfamily of receptor tyrosine kinases that includes the IGF (Insulin-like Growth Factor) receptor and the IRR (Insulin Receptor-Related Receptor). These receptors are tetrameric proteins consisting of two alpha and two beta subunits that function as allosteric enzymes in which the alpha subunit inhibits the tyrosine kinase activity of the beta subunit. Insulin has diverse effects on cells including stimulation of glucose transport, gene expression and alterations of cell morphology. The hormone mediates these effects by activation of signaling pathways which utilize, i) adaptor molecules such the IRS (Insulin Receptor Substrates), the SHC (Src and Collagen Homologues) and the GRB2 (Growth Factor Receptor Binding protein-2), ii) lipid kinases such as PI3K (Phosphatidylinositol 3-Kinase), iii) small G-proteins like Rac, and iv) serine, threonine and tyrosine kinases (Ref.2).

Tyrosine-phosphorylated IRS then displays binding sites for numerous signaling partners. PI3K has a major role in insulin functions. It regulates three main classes of signaling molecules: the AGC family of serine/threonine protein kinases, guanine nucleotide-exchange proteins of the Rho family of GTPases, and the Tec family of tyrosine kinases. The best characterized of the AGC kinases is PDK-1 (Phosphoinositide-Dependent Kinase-1), one of the serine kinases that phosphorylates and activates the serine/threonine kinase Akt/PKB (Protein Kinase-B). Akt possesses a PH domain that also interacts directly with PIP3 (Phosphatidylinositol -3, 4, 5-Triphosphate), promoting membrane targeting of the protein and catalytic activation. Akt has been suggested to be important in transmission of the insulin signal, by phosphorylation of the enzyme GSK3 (Glycogen Synthase Kinase-3), the FKHRL1 (Forkhead-Related Family of Mammalian Transcription Factor) and cAMP (Cyclic Adenosine Monophosphate) response element-binding protein. Akt inhibits apoptosis by phosphorylating the BAD (BCL2 Antagonist of Cell Death) component of the BAD/BCLXL complex. Phosphorylated BAD binds to 14-3-3 causing dissociation of the BAD/BCLXL complex and allowing cell survival, and Akt activates IKK, which ultimately leads to NF-KappaB (Nuclear Factor-KappaB) activation and cell survival. Akt also activates the mTOR (Mammalian Target of Rapamycin)/FRAP pathway. Activation of mTOR results in the phosphorylation of ribosomal protein S6 kinase, p70S6K, which is also regulated by phosphorylation by PDK-1. Rapamycin (FRAP) interactions with mTOR also regulate the activity of p70S6K, the kinase that phosphorylates the 40S ribosomal protein S6. S6 is thought to be the only p70S6K substrate, and by controlling S6 phosphorylation, p70S6K regulates the translation of an essential family of mRNAs that contain an oligopyrimidine tract at their transcriptional start site. Activation of mTOR also results in phosphorylation and inactivation of eIF4EBP (Eukaryotic Initiation Factor 4EBinding Protein), also known as PHAS, an inhibitor of the translation initiation factor eIF4E (Eukaryotic Initiation Factor-4E). Insulin induces dephosphorylation of eEF2 (Eukaryotic Elongation Factor-2) and inactivation of eEF2K (Eukaryotic Elongation Factor-2 Kinase), and these effects are blocked by rapamycin, which inhibits the mammalian target of rapamycin, mTOR.

signal to boost muscle protein synthesis and ..

Improvement of protein synthesis in muscle will greatly enhance the production of lean pork

PTPase (Protein Tyrosine Phosphatases) catalyze the dephosphorylation of insulin receptor and its substrates, leading to attenuation of insulin action. A number of PTPases have been implicated as the negative regulator of insulin signaling. Among them, the intracellular PTPase, PTP1B, has been shown to function as the insulin receptor phosphatase. PTEN (Phosphatase and Tensin Homolog Deleted On Chromosome-10) negatively regulates insulin signaling. SHIP2 (SH2-containing Inositol Phosphatase-2) is another negative regulator of insulin signaling and such negative regulation depends on its 5'-phopshatase activity. Overexpression of SHIP2 protein decreases Insulin-dependent PIP3 production as well as insulin-stimulated Akt activation, GSK3 inactivation, and glycogen synthetase activation. Insulin increases glucose uptake in muscle and fat, and inhibits hepatic glucose production, thus serving as the primary regulator of blood glucose concentration. Insulin also stimulates cell growth and differentiation, and promotes the storage of substrates in fat, liver and muscle by stimulating lipogenesis, glycogen and protein synthesis, and inhibiting lipolysis, glycogenolysis and protein breakdown. Insulin resistance or deficiency results in profound dysregulation of these processes, and produces elevations in fasting and postprandial glucose and lipid levels.

AB - We examined the effects of a combined, local intra-arterial infusion of growth hormone (GH) and insulin on forearm glucose and protein metabolism in seven normal adults. GH was infused into the brachial artery for 6 h with a dose that, in a previous study, stimulated muscle protein synthesis (phenylalanine Rd) without affecting systemic GH, insulin, or insulinlike growth factor I concentrations. For the last 3 h of the GH infusion, insulin was coinfused with a dose that, in the absence of infused GH, suppressed forearm muscle proteolysis by 30-40% without affecting systemic insulin levels. Measurements of forearm glucose, amino acid balance, and [3H]phenylalanine and [14C]leucine kinetics were made at 3 and 6 h of the infusion. Glucose uptake by forearm tissues in response to GH and insulin did not change significantly between 3 and 6 h. By 6 h, the combined infusion of GH and insulin promoted a significantly more positive net balance of phenylalanine, leucine, isoleucine, and valine (all P

Insulin is the major hormone controlling critical energy functions such as glucose and lipid metabolism
Order now
  • UNMATCHED QUALITY

    As soon as we have completed your work, it will be proofread and given a thorough scan for plagiarism.

  • STRICT PRIVACY

    Our clients' personal information is kept confidential, so rest assured that no one will find out about our cooperation.

  • COMPLETE ORIGINALITY

    We write everything from scratch. You'll be sure to receive a plagiarism-free paper every time you place an order.

  • ON-TIME DELIVERY

    We will complete your paper on time, giving you total peace of mind with every assignment you entrust us with.

  • FREE CORRECTIONS

    Want something changed in your paper? Request as many revisions as you want until you're completely satisfied with the outcome.

  • 24/7 SUPPORT

    We're always here to help you solve any possible issue. Feel free to give us a call or write a message in chat.

Order now

The Muscle-Building Messenger: Your Complete Guide To Insulin

Akt and/or the atypical PKCs (Protein Kinase-C) seem to be required for insulin-stimulated glucose transport. The ability of insulin to stimulate glucose uptake relies on a complex signaling cascade that leads to the translocation of GLUT4 (Glucose Transporter Protein-4) from an intracellular compartment to the plasma membrane, which results in increased glucose uptake. While the PI3K/Akt cascade participates in this process, another major pathway leading to GLUT4 translocation involves the insulin receptor-mediated phosphorylation of CAP (c-Cbl Associated Protein) and formation of the CAP:Cbl:CrkII complex. This complex, through its interaction with flotillin, localizes to lipid rafts facilitating GLUT4 translocation, using in the final step a Synip-containing specialized Snare complex (Ref.3). The signaling contributions of other proteins bound by phosphorylated IRSs, including the phosphotyrosine phosphatase SHP2, Fyn, and the SH3- containing adaptor Nck, are yet to be clearly defined. Another important protein involved in insulin signaling is GRB10 (Growth Factor Receptor-Bound Protein 10). GRB10 interacts directly with IR (Insulin Receptor). IR does not phosphorylate GRB10, but phosphorylation by Tyrosine Kinases of the Src family negatively regulates binding to IR. GRB10 is believed to interact with MEK and play a role in signaling. As is the case for other growth factors, insulin stimulates the MAPK (Mitogen-Activated Protein) ERK (Extracellular Signal Regulated Kinase). This pathway involves the tyrosine phosphorylation of IRS proteins and/or SHC, which in turn interact with the adapter protein GRB2, recruiting the SOS (Son of Sevenless) exchange protein to the plasma membrane for activation of Ras. The activation of Ras also requires stimulation of the tyrosine phosphatase SHP2, through its interaction with receptor substrates such as GAB1 (GRB2 Associated Binding Protein-1) or IRS1/2. Once activated, Ras operates as a molecular switch, stimulating a serine kinase cascade through the stepwise activation of Raf, MEK and ERK. Activated ERK can translocate into the nucleus, where it catalyses the phosphorylation of transcription factors such as p62TCF, initiating a transcriptional programme that leads to cellular proliferation or differentiation (Ref.4).

Glossary | Linus Pauling Institute | Oregon State University

Signal transduction by the insulin receptor is not limited to its activation at the cell surface. The activated ligand receptor complex, initially at the cell surface, is internalized into endosomes, and this process is dependent on tyrosine autophosphorylation. Endocytosis of activated receptors has the dual effect of concentrating receptors within endosomes and allowing the insulin receptor tyrosine kinase to phosphorylate substrates that are spatially distinct from those accessible at the plasma membrane. Acidification of the endosomal lumen, due to the presence of proton pumps, results in dissociation of insulin from its receptor. The endosome constitutes the major site of insulin degradation by the EAI (Endosomal Acidic Insulinase). This loss of the ligand-receptor complex attenuates any further insulin-driven receptor rephosphorylation events and leads to receptor dephosphorylation by extra lumenal endosomally associated PTPs.

Order now
  • You submit your order instructions

  • We assign an appropriate expert

  • The expert takes care of your task

  • We send it to you upon completion

Order now
  • 37 684

    Delivered orders

  • 763

    Professional writers

  • 311

    Writers online

  • 4.8/5

    Average quality score

Order now
  • Kim

    "I have always been impressed by the quick turnaround and your thoroughness. Easily the most professional essay writing service on the web."

  • Paul

    "Your assistance and the first class service is much appreciated. My essay reads so well and without your help I'm sure I would have been marked down again on grammar and syntax."

  • Ellen

    "Thanks again for your excellent work with my assignments. No doubts you're true experts at what you do and very approachable."

  • Joyce

    "Very professional, cheap and friendly service. Thanks for writing two important essays for me, I wouldn't have written it myself because of the tight deadline."

  • Albert

    "Thanks for your cautious eye, attention to detail and overall superb service. Thanks to you, now I am confident that I can submit my term paper on time."

  • Mary

    "Thank you for the GREAT work you have done. Just wanted to tell that I'm very happy with my essay and will get back with more assignments soon."

Ready to tackle your homework?

Place an order