Call us toll-free

Quick academic help

Don't let the stress of school get you down! Have your essay written by a professional writer before the deadline arrives.

Calculate the price

Pages:

275 Words

$19,50

Blinking suppression of colloidal CdSe/ZnS quantum dots …

Thisdissertation describes the synthesis and in-depth characterization oflead chalcogenide colloidal quantum dots for forthcoming applications asnear-infrared single photon emitters.

We report on the “flash” synthesis of CdSe/CdS core–shell quantum dots (QDs)

Recent advances in the chemistry of colloidal semiconductor nanocrystal doping have led to new materials showing fascinating physical properties of potential technological importance. This article provides an overview of efforts to dope one of the most widely studied colloidal semiconductor nanocrystal systems, CdSe quantum dots, with one of the most widely studied transition-metal dopant ions, Mn2+, and describes the major new physical properties that have emerged following successful synthesis of this material. These properties include spin-polarizable excitonic photoluminescence, magnetic circular dichroism, exciton storage, and excitonic magnetic polaron formation. A brief survey of parallel advances in the characterization of analogous self-assembled Mn2+-doped quantum dots grown by molecular beam epitaxy is also presented, and the physical properties of the colloidal quantum dots are shown to compare favorably with those of the self-assembled quantum dots. The rich variety of physical properties displayed by colloidal Mn 2+-doped CdSe quantum dots highlights the attractiveness of this material for future fundamental and applied research.

Blinking suppression of colloidal CdSe/ZnS quantum dots by …

The role of organic amines in the colloidal synthesis of CdSe quantum dots (QDs) has been studied

Apart from the delivery of conventional, small molecule drugs, quantum dots/rods have also been shown to have promise for delivery of more complex biomolecules, such as short interfering RNA (siRNA).[] These short and double-stranded therapeutic RNA molecules function by blocking the expression of undesirable, disease-causing genes. However, in their free form they have high negative charge and are vulnerable to degradation in physiological fluids. Therefore, for optimal function and vivo, they must be delivered via electrostatic complexation with cationic nanocariers. Quantum dots/rods, appropriately surface functionalized with cationic moieties, are ideal siRNA carriers as they not only render these genetic drugs with physiological stability and target specificity, but also the whole complex (nanoplex) can be optically traced.

54. Dabbousi BO, Rodriguez-Viejo J, Mikulec FV, Heine JR, Mattoussi H, Ober R. . (CdSe)ZnS Core-Shell Quantum Dots: Synthesis and Characterization of a Size Series of Highly Luminescent Nanocrystallites. 1997;101:9463-75

and emission in colloidal PbSe/CdSe core/shell quantum dots ..

04/11/2011 · We report synthesis of CdSe and CdTe quantum dots ..

Quantum dots (QDs) are luminescent nanocrystals with rich surface chemistry and unique optical properties that make them useful as probes or carriers for traceable targeted delivery and therapy applications. QDs can be functionalized to target specific cells or tissues by conjugating them with targeting ligands. Recent advancement in making biocompatible QD formulations has made these nanocrystals suitable for applications. This review provides an overview of the preparation of QDs and their use as probes or carriers for traceable, targeted therapy of diseases and . More specifically, recent advances in the integration of QDs with drug formulations for therapy and their potential toxicity and are highlighted. The current findings and challenges for optimizing QD/drug formulations with respect to optimal size and stability, short-term and long-term toxicity, and applications are described. Lastly, we attempt to predict key trends in QD/drug formulation development over the next few years and highlight areas of therapy where their use may provide breakthrough results in the near future.

N2 - Recent advances in the chemistry of colloidal semiconductor nanocrystal doping have led to new materials showing fascinating physical properties of potential technological importance. This article provides an overview of efforts to dope one of the most widely studied colloidal semiconductor nanocrystal systems, CdSe quantum dots, with one of the most widely studied transition-metal dopant ions, Mn2+, and describes the major new physical properties that have emerged following successful synthesis of this material. These properties include spin-polarizable excitonic photoluminescence, magnetic circular dichroism, exciton storage, and excitonic magnetic polaron formation. A brief survey of parallel advances in the characterization of analogous self-assembled Mn2+-doped quantum dots grown by molecular beam epitaxy is also presented, and the physical properties of the colloidal quantum dots are shown to compare favorably with those of the self-assembled quantum dots. The rich variety of physical properties displayed by colloidal Mn 2+-doped CdSe quantum dots highlights the attractiveness of this material for future fundamental and applied research.

10/08/2012 · This video shows the synthesis of colloidal CdSe quantum dots
Order now
  • UNMATCHED QUALITY

    As soon as we have completed your work, it will be proofread and given a thorough scan for plagiarism.

  • STRICT PRIVACY

    Our clients' personal information is kept confidential, so rest assured that no one will find out about our cooperation.

  • COMPLETE ORIGINALITY

    We write everything from scratch. You'll be sure to receive a plagiarism-free paper every time you place an order.

  • ON-TIME DELIVERY

    We will complete your paper on time, giving you total peace of mind with every assignment you entrust us with.

  • FREE CORRECTIONS

    Want something changed in your paper? Request as many revisions as you want until you're completely satisfied with the outcome.

  • 24/7 SUPPORT

    We're always here to help you solve any possible issue. Feel free to give us a call or write a message in chat.

Order now

CdSe ZnS Core-Shell Quantum Dots Synthesis and ..

(a) Absorption and emission of rhodamine red, a common organic dye, and genetically-encoded DsRed2 protein. (b) Absorption and emission of different QD dispersions. The black line shows the absorption of the 510-nm-emitting QDs. (c) Photo demonstrating the size-tunable luminescence properties and spectral range of the six QD dispersions plotted in b versus CdSe core size. All samples were excited at 365 nm. Reprinted by permission from Macmillan Publishers Ltd: Nature Materials (Medintz IL, Uyeda HT, Goldman ER, Mattoussi H. Quantum dot bioconjugates for imaging, labelling and sensing. Nat Mater. 2005; 4: 435-46., ), copyright 2005.

Synthesis of CdSe/ZnS and CdTe/ZnS quantum dots

AB - Recent advances in the chemistry of colloidal semiconductor nanocrystal doping have led to new materials showing fascinating physical properties of potential technological importance. This article provides an overview of efforts to dope one of the most widely studied colloidal semiconductor nanocrystal systems, CdSe quantum dots, with one of the most widely studied transition-metal dopant ions, Mn2+, and describes the major new physical properties that have emerged following successful synthesis of this material. These properties include spin-polarizable excitonic photoluminescence, magnetic circular dichroism, exciton storage, and excitonic magnetic polaron formation. A brief survey of parallel advances in the characterization of analogous self-assembled Mn2+-doped quantum dots grown by molecular beam epitaxy is also presented, and the physical properties of the colloidal quantum dots are shown to compare favorably with those of the self-assembled quantum dots. The rich variety of physical properties displayed by colloidal Mn 2+-doped CdSe quantum dots highlights the attractiveness of this material for future fundamental and applied research.

The Synthesis and Surface Chemistry of Colloidal Quantum Dots

Mahajan et al have used an attractive approach where drug delivery has been integrated with site-specificity using a QD-based platform []. Specifically, the antiretroviral drug saquinavir and the biorecognition molecule transferrin (Tf) have been conjugated to carboxyl-terminated quantum dots using carbodiimide chemistry. The aim of this study was to significantly enhance the transport of saquinavir into the brain, for the treatment of HIV-1 infected cells within the brain, via targeting the transferrin receptors (TfRs), which are overexpressed on the apical surface of the blood brain barrier (BBB). Using an model of the BBB, they demonstrated that these targeted and drug-doped QDs can efficiently cross the BBB, and caused a marked decrease in viral replication in the HIV-1 infected peripheral blood mononuclear cells (PBMCs) within the brain. These results highlight the potential of this nanoformulation in the treatment of Neuro-AIDS and other neurological disorders.

An alternative method of quantum dot synthesis, ..

Besides the two approaches mentioned above, related approaches have been developed using combinations of both QDs and drug for detecting and treating cancer . For instance, Mathew et al. demonstrated the fabrication of folic acid-conjugated carboxymethyl chitosan coordinated to Mn-doped ZnS QDs []. The system can be used for targeting, controlled drug delivery and imaging of cancer cells. The anticancer drug, 5-Fluorouracil, was incorporated into this QD formulation and was used for the treatment of breast cancer . The nontoxicity of QD formulation was investigated using L929 cells. Breast cancer cell line MCF-7 was used to study the imaging, targeted delivery and cytotoxicity of the drug-loaded QD formulation. Zhou et al. investigated the use of water-dispersible CdTe QDs coated with negatively charged 3-mercaptopropionic acid to enhance drug uptake into cancer cells. They reported that the MPA-coated CdTe QDs were able to facilitate the interaction of anticancer agent daunorubicin with leukemia cells and enhance the efficiency of biolabeling in cancer cells. Thus, that study demonstrated a potential method for simultaneous cellular inhibition and imaging of cancer cells.

Order now
  • You submit your order instructions

  • We assign an appropriate expert

  • The expert takes care of your task

  • We send it to you upon completion

Order now
  • 37 684

    Delivered orders

  • 763

    Professional writers

  • 311

    Writers online

  • 4.8/5

    Average quality score

Order now
  • Kim

    "I have always been impressed by the quick turnaround and your thoroughness. Easily the most professional essay writing service on the web."

  • Paul

    "Your assistance and the first class service is much appreciated. My essay reads so well and without your help I'm sure I would have been marked down again on grammar and syntax."

  • Ellen

    "Thanks again for your excellent work with my assignments. No doubts you're true experts at what you do and very approachable."

  • Joyce

    "Very professional, cheap and friendly service. Thanks for writing two important essays for me, I wouldn't have written it myself because of the tight deadline."

  • Albert

    "Thanks for your cautious eye, attention to detail and overall superb service. Thanks to you, now I am confident that I can submit my term paper on time."

  • Mary

    "Thank you for the GREAT work you have done. Just wanted to tell that I'm very happy with my essay and will get back with more assignments soon."

Ready to tackle your homework?

Place an order