Call us toll-free

Quick academic help

Don't let the stress of school get you down! Have your essay written by a professional writer before the deadline arrives.

Calculate the price

Pages:

275 Words

$19,50

Mo-molybdopterin cofactor biosynthetic process

AB - Post-translational modifications of amino acids can be used to generate novel cofactors capable of chemistries inaccessible to conventional amino acid side chains. The biosynthesis of these sites often requires one or more enzyme or protein accessory factors, the functions of which are quite diverse and often difficult to isolate in cases where multiple enzymes are involved. Herein is described the current knowledge of the biosynthesis of urease and nitrile hydratase metal centers, pyrroloquinoline quinone, hypusine, and tryptophan tryptophylquinone cofactors along with the most recent work elucidating the functions of individual accessory factors in these systems. These examples showcase the breadth and diversity of this continually expanding field.

Molybdenum Cofactor Biosynthesis | Yokoyama Lab

The majority of molybdenum-containing enzymes utilise a molybdenum cofactor (MoCF or Moco) consisting of a Mo atom coordinated via a cis-dithiolene moiety to molybdopterin (MPT). MoCF is ubiquitous in nature, and the pathway for MoCF biosynthesis is conserved in all three domains of life. MoCF-containing enzymes function as oxidoreductases in carbon, nitrogen, and sulphur metabolism [, ].

Cofactor Biosynthesis: A Mechanistic Perspective | …

The biosynthesis of secondary metabolites is closely linked to primary metabolism via the supply of precursors, cofactors, and cellular energy. The availability of these precursors and cofactors can potentially be rate-limiting for secondary metabolism. A combined experimental and kinetic modeling approach was used to examine the regulation of flux in the cephamycin biosynthetic pathway in Streptomyces clavuligerus. The kinetic parameters of lysine 6-aminotransferase (LAT), the first enzyme leading to cephamycin biosynthesis and one which was previously identified as being a rate-limiting enzyme, were characterized. LAT converts lysine to α-aminoadipic acid using α-ketoglutarate as a cosubstrate. The K(m) values for lysine and α-ketoglutarate were substantially higher than those for their intracellular concentrations, suggesting that lysine and α-ketoglutarate may play a key role in regulating the flux of cephamycin biosynthesis. The important role of this precursor/cosubstrate was supported by simulated results using a kinetic model. When the intracellular concentrations and high K(m) values were taken into account, the predicted intermediate concentration was similar to the experimental measurements. The results demonstrate the controlling roles that precursors and cofactors may play in the biosynthesis of secondary metabolites.

N2 - The biosynthesis of secondary metabolites is closely linked to primary metabolism via the supply of precursors, cofactors, and cellular energy. The availability of these precursors and cofactors can potentially be rate-limiting for secondary metabolism. A combined experimental and kinetic modeling approach was used to examine the regulation of flux in the cephamycin biosynthetic pathway in Streptomyces clavuligerus. The kinetic parameters of lysine 6-aminotransferase (LAT), the first enzyme leading to cephamycin biosynthesis and one which was previously identified as being a rate-limiting enzyme, were characterized. LAT converts lysine to α-aminoadipic acid using α-ketoglutarate as a cosubstrate. The K(m) values for lysine and α-ketoglutarate were substantially higher than those for their intracellular concentrations, suggesting that lysine and α-ketoglutarate may play a key role in regulating the flux of cephamycin biosynthesis. The important role of this precursor/cosubstrate was supported by simulated results using a kinetic model. When the intracellular concentrations and high K(m) values were taken into account, the predicted intermediate concentration was similar to the experimental measurements. The results demonstrate the controlling roles that precursors and cofactors may play in the biosynthesis of secondary metabolites.

Conditions Biopterin Defect in Cofactor Biosynthesis

N2 - Post-translational modifications of amino acids can be used to generate novel cofactors capable of chemistries inaccessible to conventional amino acid side chains. The biosynthesis of these sites often requires one or more enzyme or protein accessory factors, the functions of which are quite diverse and often difficult to isolate in cases where multiple enzymes are involved. Herein is described the current knowledge of the biosynthesis of urease and nitrile hydratase metal centers, pyrroloquinoline quinone, hypusine, and tryptophan tryptophylquinone cofactors along with the most recent work elucidating the functions of individual accessory factors in these systems. These examples showcase the breadth and diversity of this continually expanding field.

BH4 has furthermore an essential role in the biosynthesis of nitric oxide (NO) as an allosteric activator of nitricoxide synthase (NOS) and seems to be necessary for catalytic turnover involving a redox-function of the cofactor.

Order now
  • UNMATCHED QUALITY

    As soon as we have completed your work, it will be proofread and given a thorough scan for plagiarism.

  • STRICT PRIVACY

    Our clients' personal information is kept confidential, so rest assured that no one will find out about our cooperation.

  • COMPLETE ORIGINALITY

    We write everything from scratch. You'll be sure to receive a plagiarism-free paper every time you place an order.

  • ON-TIME DELIVERY

    We will complete your paper on time, giving you total peace of mind with every assignment you entrust us with.

  • FREE CORRECTIONS

    Want something changed in your paper? Request as many revisions as you want until you're completely satisfied with the outcome.

  • 24/7 SUPPORT

    We're always here to help you solve any possible issue. Feel free to give us a call or write a message in chat.

Order now

Cofactor Biosynthesis: A Mechanistic Perspective

Post-translational modifications of amino acids can be used to generate novel cofactors capable of chemistries inaccessible to conventional amino acid side chains. The biosynthesis of these sites often requires one or more enzyme or protein accessory factors, the functions of which are quite diverse and often difficult to isolate in cases where multiple enzymes are involved. Herein is described the current knowledge of the biosynthesis of urease and nitrile hydratase metal centers, pyrroloquinoline quinone, hypusine, and tryptophan tryptophylquinone cofactors along with the most recent work elucidating the functions of individual accessory factors in these systems. These examples showcase the breadth and diversity of this continually expanding field.

Cofactor Biosynthesis Vol 61 A Mechanistic Perspective

AB - The biosynthesis of secondary metabolites is closely linked to primary metabolism via the supply of precursors, cofactors, and cellular energy. The availability of these precursors and cofactors can potentially be rate-limiting for secondary metabolism. A combined experimental and kinetic modeling approach was used to examine the regulation of flux in the cephamycin biosynthetic pathway in Streptomyces clavuligerus. The kinetic parameters of lysine 6-aminotransferase (LAT), the first enzyme leading to cephamycin biosynthesis and one which was previously identified as being a rate-limiting enzyme, were characterized. LAT converts lysine to α-aminoadipic acid using α-ketoglutarate as a cosubstrate. The K(m) values for lysine and α-ketoglutarate were substantially higher than those for their intracellular concentrations, suggesting that lysine and α-ketoglutarate may play a key role in regulating the flux of cephamycin biosynthesis. The important role of this precursor/cosubstrate was supported by simulated results using a kinetic model. When the intracellular concentrations and high K(m) values were taken into account, the predicted intermediate concentration was similar to the experimental measurements. The results demonstrate the controlling roles that precursors and cofactors may play in the biosynthesis of secondary metabolites.

Molybdenum cofactor biosynthesis

Metabolism1.0 Global and overview maps1.1 Carbohydrate metabolism1.2 Energy metabolism1.3 Lipid metabolism1.4 Nucleotide metabolism1.5 Amino acid metabolism1.6 Metabolism of other amino acids1.7 Glycan biosynthesis and metabolism1.8 Metabolism of cofactors and vitamins1.9 Metabolism of terpenoids and polyketides1.10 Biosynthesis of other secondary metabolites1.11 Xenobiotics biodegradation and metabolism1.12 Chemical structure transformation maps

Order now
  • You submit your order instructions

  • We assign an appropriate expert

  • The expert takes care of your task

  • We send it to you upon completion

Order now
  • 37 684

    Delivered orders

  • 763

    Professional writers

  • 311

    Writers online

  • 4.8/5

    Average quality score

Order now
  • Kim

    "I have always been impressed by the quick turnaround and your thoroughness. Easily the most professional essay writing service on the web."

  • Paul

    "Your assistance and the first class service is much appreciated. My essay reads so well and without your help I'm sure I would have been marked down again on grammar and syntax."

  • Ellen

    "Thanks again for your excellent work with my assignments. No doubts you're true experts at what you do and very approachable."

  • Joyce

    "Very professional, cheap and friendly service. Thanks for writing two important essays for me, I wouldn't have written it myself because of the tight deadline."

  • Albert

    "Thanks for your cautious eye, attention to detail and overall superb service. Thanks to you, now I am confident that I can submit my term paper on time."

  • Mary

    "Thank you for the GREAT work you have done. Just wanted to tell that I'm very happy with my essay and will get back with more assignments soon."

Ready to tackle your homework?

Place an order