Call us toll-free

Quick academic help

Don't let the stress of school get you down! Have your essay written by a professional writer before the deadline arrives.

Calculate the price

Pages:

275 Words

$19,50

Quantum Polymer TechnologiesSelf-assembling polymer nanowires.

During the lithiation process, single–crystalline Co9S8 nanowire converts to multi–crystalline nanowire consisting of Co nanograins and Li2S matrix, and the reversible phase conversion between Co9S8 and nanosized Co is revealed during the multiple cycles.

Nagy’s team at the University of Namur in the field of Carbon Nanotubes.

photo-catalyst and ion exchange products capable of destroying microbial, mould, fungi and odour."


Single-walled carbon nanotubes (SWNT)


"PuraMatrix™, 3DM's innovative and award-winning family of biocompatible hydrogels ...

A nanowire is a nanostructure, with ..

large-scale, high-yield and low-cost production of carbon nanotubes."Nanotrope"...

The confinement effect of the carbon nanotubes, induced by the high aspect ratio of the tubes could be effectively used for the synthesis of one-dimensional nanowire zeolitic materials under non-hydrothermal macroscopic conditions.

Herein, we report the synthesis of three-dimensional self-supported SnO2 nanowire arrays wrapped in an amorphous layer of carbon, for use as high capacity anodes in lithium ion batteries. The SnO2 nanowires were synthesized using a vapor-liquid-solid growth mechanism, and the carbon coating process was performed by spin-coating sucrose solution with a subsequent pyrolysis process. The SnO2/C hybrid nanowire arrays electrode exhibits a superior reversible capacity of 700 mAh g-1 after 50 cycles at a high-current rate of 1 C, demonstrating enhanced reversible capacity and cycle performance compared to the bare nanowire. The high-reversible capacity and cycle stability are because of the enhanced electrical conductivity and the stress relaxation effect of the amorphous carbon layer.

tin selenide nanowire grown inside a single-wall carbon nanotube ..

Shenzhen Nanotech Port Co Research, manufacture, application and sales of carbon nanotubes.

Also involved in the study were Dan Sorescu, research physicist at NETL, who performed computational modeling of the gold nanowire formation; Mengning Ding, a Pitt graduate student in chemistry, who performed experimental work and synthesized and characterized gold nanowires and measured their sensor response; and Gregg Kotchey, a fellow Pitt graduate student in chemistry, who synthesized some of the graphene templates used in this study.

To test the nanowires’ ability to detect hydrogen sulfide, Star and his colleagues cast a film of the composite material onto a chip patterned with gold electrodes. The team could detect gas at levels as low as 5ppb (parts per billion)—a detection level comparable to that of existing sensing techniques. Additionally, they could detect the hydrogen sulfide in complex mixtures of gases simulating natural gas. Star says the group will now test the chips’ detection limits using real samples from gas wells.

(LPC) is working to develop the carbon nanotube technology which will enable creation of the space elevator in the future.
Order now
  • UNMATCHED QUALITY

    As soon as we have completed your work, it will be proofread and given a thorough scan for plagiarism.

  • STRICT PRIVACY

    Our clients' personal information is kept confidential, so rest assured that no one will find out about our cooperation.

  • COMPLETE ORIGINALITY

    We write everything from scratch. You'll be sure to receive a plagiarism-free paper every time you place an order.

  • ON-TIME DELIVERY

    We will complete your paper on time, giving you total peace of mind with every assignment you entrust us with.

  • FREE CORRECTIONS

    Want something changed in your paper? Request as many revisions as you want until you're completely satisfied with the outcome.

  • 24/7 SUPPORT

    We're always here to help you solve any possible issue. Feel free to give us a call or write a message in chat.

Order now

Synthesis of Aluminum Nitride Nanowires ..

Manipulation of local electronic structure is necessary to control exciton generation or annihilation, processes essential for efficient light absorption or emission. This can be achieved through band gap engineering in semiconductor heterostructures. Methods have been established for the synthesis of arrays of semiconducting nanowire-based heterostructures. These structures are a promising platform for the development of unconventional light emitting and energy harvesting devices.

Synthesis of Aluminum Nitride Nanowires from Carbon ..

PITTSBURGH—Researchers at the University of Pittsburgh have coaxed gold into nanowires as a way of creating an inexpensive material for detecting poisonous gases found in natural gas. Along with colleagues at the (NETL), Alexander Star, associate professor of chemistry in and principal investigator of the research project, developed a self-assembly method that uses scaffolds (a structure used to hold up or support another material) to grow gold nanowires. Their findings, titled “Welding of Gold Nanoparticles on Graphitic Templates for Chemical Sensing,” were published online Jan. 22 in the .

Synthesis of carbon nanowires as electrochemical electrode materials

Star and his research team determined gold nanomaterials would be ideal for detecting hydrogen sulfide owing to gold’s high affinity for sulfur and unique physical properties of nanomaterials. They experimented with carbon nanotubes and graphene—an atomic-scale chicken wire made of carbon atoms—and used computer modeling, X-ray diffraction, and transmission electron microscopy to study the self-assembly process. They also tested the resulting materials’ responses to hydrogen sulfide.

technique for providing carbon nanowire materials has great ..

“To produce the gold nanowires, we suspended nanotubes in water with gold-containing chloroauric acid,” says Star. “As we stirred and heated the mixture, the gold reduced and formed nanoparticles on the outer walls of the tubes. The result was a highly conductive jumble of gold nanowires and carbon nanotubes.”

Synthesis of Boron Nanowires, Nanotubes, and Nanosheets

Figure 1. Synthesis and characterization of gold nanowires. (a) An aqueous suspension of 1-pyrenesulfonic acid (PSA)-functionalized single-walled carbon nanotubes (SWNTs) was used as a template during citrate reduction of HAuCl4. (b) TEM images showing the assembly of AuNPs on the SWNTs (after 30 min, left) and their welding into AuNWs (after 120 min, right). (c) UV–vis–NIR absorption spectra of AuNW-SWNTs and AuNP-SWNTs samples. Gold surface plasmon resonance shows a red shift with increasing size of gold nanostructures. The inset depicts a digital photo of vials containing suspensions of AuNPs and AuNWs (with SWNTs). (d) X-ray diffraction pattern of AuNWs. (e) High-resolution TEM image of AuNWs showing the polycrystalline nature of the welded AuNWs.

Order now
  • You submit your order instructions

  • We assign an appropriate expert

  • The expert takes care of your task

  • We send it to you upon completion

Order now
  • 37 684

    Delivered orders

  • 763

    Professional writers

  • 311

    Writers online

  • 4.8/5

    Average quality score

Order now
  • Kim

    "I have always been impressed by the quick turnaround and your thoroughness. Easily the most professional essay writing service on the web."

  • Paul

    "Your assistance and the first class service is much appreciated. My essay reads so well and without your help I'm sure I would have been marked down again on grammar and syntax."

  • Ellen

    "Thanks again for your excellent work with my assignments. No doubts you're true experts at what you do and very approachable."

  • Joyce

    "Very professional, cheap and friendly service. Thanks for writing two important essays for me, I wouldn't have written it myself because of the tight deadline."

  • Albert

    "Thanks for your cautious eye, attention to detail and overall superb service. Thanks to you, now I am confident that I can submit my term paper on time."

  • Mary

    "Thank you for the GREAT work you have done. Just wanted to tell that I'm very happy with my essay and will get back with more assignments soon."

Ready to tackle your homework?

Place an order