Call us toll-free

Quick academic help

Don't let the stress of school get you down! Have your essay written by a professional writer before the deadline arrives.

Calculate the price


275 Words


Low-carbohydrate diet - Wikipedia

In crystalline form, the majority of monosaccharides are present in a “long chain” structure. In contrast, sugars dissolved in a solution, such as the fluid of a cell’s interior, frequently convert into a “ring” structure. The molecular formula of a sugar is not affected by conversions from a long chain to a ring structure. The ring forms of sugars are the structures that react to form carbohydrate dimers and polymers.

How are carbohydrates synthesized in cells? | Yahoo …

Polysaccharides, the “complex carbohydrates,” play vital energy storage and structural roles in living organisms, making carbohydrates the most abundant biomolecules on Earth. Polysaccharides are excellent energy storage molecules because they are easily built and broken down by enzymes. Forming fairly compact structures, polysaccharides allow energy storage without the space required by a pool of free glucose monomers. Other polysaccharides form strong fibers that provide protection and structural support in both plants and animals.

Chemical Synthesis of Complex Carbohydrates - …

13/09/2006 · How are carbohydrates synthesized in cells ..

are the most abundant biomolecule on Earth. Living organisms use carbohydrates as accessible energy to fuel cellular reactions and for structural support inside cell walls. Cells attach carbohydrate molecules to proteins and lipids, modifying structures to enhance functionality. For example, small carbohydrate molecules bonded to lipids in cell membranes improve cell identification, cell signaling, and complex immune system responses. The carbohydrate monomers deoxyribose and ribose are integral parts of DNA and RNA molecules.

To recognize how carbohydrates function in living cells, we must understand their chemical structure. The structure of carbohydrates determines how energy is stored in carbohydrate bonds during photosynthesis and how breaking these bonds releases energy during cellular respiration.

Nano-carbohydrates: Synthesis and application in …

Nano-carbohydrates: Synthesis and application in genetics, biotechnology, and medicine

With small differences in the bond between monomers, polymers can function as compact energy storage units in and or as strong, protective fibers in and . Understanding the structure, synthesis, and breakdown of carbohydrate polymers provides a framework for understanding their function in living cells.

Carbohydrate chains with hundreds or more monosaccharide units are polysaccharides. Unlike shorter chains, carbohydrate polymers are frequently composed of a single type of monosaccharide unit. Differences in the structure and function of these polymers arise mainly from differences in the glycosidic linkage, rather than the presence of different monosaccharides. Glycosidic linkages involve covalent bonds from one carbon atom in each monosaccharide to a single oxygen atom between them. However, which carbon atoms participate in this covalent bond may be different in each carbohydrate molecule.

Order now

    As soon as we have completed your work, it will be proofread and given a thorough scan for plagiarism.


    Our clients' personal information is kept confidential, so rest assured that no one will find out about our cooperation.


    We write everything from scratch. You'll be sure to receive a plagiarism-free paper every time you place an order.


    We will complete your paper on time, giving you total peace of mind with every assignment you entrust us with.


    Want something changed in your paper? Request as many revisions as you want until you're completely satisfied with the outcome.

  • 24/7 SUPPORT

    We're always here to help you solve any possible issue. Feel free to give us a call or write a message in chat.

Order now

Carbohydrate Synthesis – Alberta Glycomics Centre

Carbohydrate chains are extended by additional dehydration synthesis reactions, adding one monomer at a time to a growing chain. Short chains called oligosaccharides are frequently attached to lipids and proteins. These carbohydrate “tags” support immune system functions, participate in cell communication, and help attach cells to extracellular surfaces and other cells.

Chapter 20 Carbohydrate Biosynthesis - OoCities

Plants synthesize two types of polysaccharides, starch and cellulose. The glycosidic bonds between glucose units in plant starch are similar to those in animal glycogen. Accordingly, starch molecules are structurally similar, forming compact coils, and play a similar role in energy storage for plants. Unlike glycogen, starch molecules vary widely in the level of branching. Most plants form a mixture of starch polymers with little to no branching and polymers with extensive branching.

Lehninger Chapter 20: Carbohydrate Biosynthesis

Cells build carbohydrate polymers by using energy to form , the bonds between monosaccharides. A dehydration synthesis reaction forms a bond between carbon atoms in two monosaccharides, sandwiching an oxygen atom between them and releasing a water molecule. A disaccharide forms when two monomers are joined. Sucrose (table sugar) is made by joining two specific monomers, glucose and fructose. Different monosaccharide pairs produce many of the common disaccharide sugars we associate with food, including sucrose, maltose (malt sugar, two glucose monomers) and lactose (milk sugar, glucose and galactose monomers).

Carbohydrates Elements and Chemistry - ThoughtCo

Plants synthesize a structural polysaccharide called cellulose. Although cellulose is made with glucose, the glycosidic linkages between glucose monomers are different from the bonds in glycogen and starch. This unique bond structure causes cellulose chains to form linear flat strands instead of coils. The flat cellulose strands are able to form tightly packed bundles. Strong and rigid fibers result as form between polar hydroxyl groups in the bundled polymers. Cellulose fibers provide structural support to plants. Without cellulose, flower stems and tree trunks could not maintain their rigid, straight height.

Carbohydrates : synthesis, mechanisms, and stereoelectronic effects

Carbohydrate monomers, short chains, and polymers perform important cellular functions to maintain life. The number and type of monosaccharides used, as well as the position of the bond between them, determines the three-dimensional structure of each carbohydrate. By recognizing the structural and functional differences between common carbohydrate monomers and polymers, we can better understand the roles carbohydrates play inside cells and in the human diet.

Order now
  • You submit your order instructions

  • We assign an appropriate expert

  • The expert takes care of your task

  • We send it to you upon completion

Order now
  • 37 684

    Delivered orders

  • 763

    Professional writers

  • 311

    Writers online

  • 4.8/5

    Average quality score

Order now
  • Kim

    "I have always been impressed by the quick turnaround and your thoroughness. Easily the most professional essay writing service on the web."

  • Paul

    "Your assistance and the first class service is much appreciated. My essay reads so well and without your help I'm sure I would have been marked down again on grammar and syntax."

  • Ellen

    "Thanks again for your excellent work with my assignments. No doubts you're true experts at what you do and very approachable."

  • Joyce

    "Very professional, cheap and friendly service. Thanks for writing two important essays for me, I wouldn't have written it myself because of the tight deadline."

  • Albert

    "Thanks for your cautious eye, attention to detail and overall superb service. Thanks to you, now I am confident that I can submit my term paper on time."

  • Mary

    "Thank you for the GREAT work you have done. Just wanted to tell that I'm very happy with my essay and will get back with more assignments soon."

Ready to tackle your homework?

Place an order