Quick academic help
Don't let the stress of school get you down! Have your essay written by a professional writer before the deadline arrives.
Hypothesis Testing for Means & Proportions
One possible conclusion to a statistical hypothesis test. We use this phrase since, using our process, we cannot prove the null hypothesis. In this case the data from our sample would not be rare if the null hypothesis were true and thus we cannot reject the null hypothesis.
Hypothesis testing applications with a continuous outcome variable in a single population are performed according to the fivestep procedure outlined above. A key component is setting up the null and research hypotheses. The objective is to compare the mean in a single population to known mean (μ_{0}). The known value is generally derived from another study or report, for example a study in a similar, but not identical, population or a study performed some years ago. The latter is called a historical control. It is important in setting up the hypotheses in a one sample test that the mean specified in the null hypothesis is a fair and reasonable comparator. This will be discussed in the examples that follow.
I’m stuck on how to value the null or alternative hypotheses
Im having a hard time answer a problem. The genetics and IV I situate conduct a clinical trial of the YOSORT method designed to increase the probability of a boy and 239 of them were Boyd’s. Use a 0.01 significance level to test the claim that the YOSORT method is effective in increasing the like hood that a baby will be a boy . I have to identify the null hypothesis, alternative hypothesis, test status is, pvalue or critical value .
Noone I know can figure out which statistical test(s) I can do with the results, basically I have 4 tables of data that I tested for 12 hours (Once an hour eg 1900 – 1959, 2000 – 2059 etc…) for 30 days.
The light levels, humidity levels and temperature I need to compare with the ewes entering parturition data, I’ve calculated the means and standard deviation but, I get mixed results when I then run an ANVOVA test, t test two sample assuming equal variances and an f test two sampled for variances
We reject the null hypothesis because 6.15
In one sample tests for a continuous outcome, we set up our hypotheses against an appropriate comparator. We select a sample and compute descriptive statistics on the sample data  including the sample size (n), the sample mean ( ) and the sample standard deviation (s). We then determine the appropriate test statistic (Step 2) for the hypothesis test. The formulas for test statistics depend on the sample size and are given below.
In all tests of hypothesis, there are two types of errors that can be committed. The first is called a Type I error and refers to the situation where we incorrectly reject H_{0} when in fact it is true. This is also called a false positive result (as we incorrectly conclude that the research hypothesis is true when in fact it is not). When we run a test of hypothesis and decide to reject H_{0} (e.g., because the test statistic exceeds the critical value in an upper tailed test) then either we make a correct decision because the research hypothesis is true or we commit a Type I error. The different conclusions are summarized in the table below. Note that we will never know whether the null hypothesis is really true or false (i.e., we will never know which row of the following table reflects reality).
Why choose our assistance?

UNMATCHED QUALITY
As soon as we have completed your work, it will be proofread and given a thorough scan for plagiarism.

STRICT PRIVACY
Our clients' personal information is kept confidential, so rest assured that no one will find out about our cooperation.

COMPLETE ORIGINALITY
We write everything from scratch. You'll be sure to receive a plagiarismfree paper every time you place an order.

ONTIME DELIVERY
We will complete your paper on time, giving you total peace of mind with every assignment you entrust us with.

FREE CORRECTIONS
Want something changed in your paper? Request as many revisions as you want until you're completely satisfied with the outcome.

24/7 SUPPORT
We're always here to help you solve any possible issue. Feel free to give us a call or write a message in chat.
the null hypothesis is rejected when it is true b.
We now use the fivestep procedure to test the research hypothesis that the mean weight in men in 2006 is more than 191 pounds. We will assume the sample data are as follows: n=100, =197.1 and s=25.6.
the null hypothesis is not rejected when it is false c.
In all tests of hypothesis, there are two types of errors that can be committed. The first is called a Type I error and refers to the situation where we incorrectly reject H_{0} when in fact it is true. This is also called a false positive result (as we incorrectly conclude that the research hypothesis is true when in fact it is not). When we run a test of hypothesis and decide to reject H_{0} (e.g., because the test statistic exceeds the critical value in an upper tailed test) then either we make a correct decision because the research hypothesis is true or we commit a Type I error. The different conclusions are summarized in the table below. Note that we will never know whether the null hypothesis is really true or false (i.e., we will never know which row of the following table reflects reality).
the research hypothesis is not rejected when it is false7221
We now use the fivestep procedure to test the research hypothesis that the mean weight in men in 2006 is more than 191 pounds. We will assume the sample data are as follows: n=100, =197.1 and s=25.6.
the null hypothesis is probably wrong b.
Statistical computing packages provide exact pvalues as part of their standard output for hypothesis tests. In fact, when using a statistical computing package, the steps outlined about can be abbreviated. The hypotheses (step 1) should always be set up in advance of any analysis and the significance criterion should also be determined (e.g., α =0.05). Statistical computing packages will produce the test statistic (usually reporting the test statistic as t) and a pvalue. The investigator can then determine statistical significance using the following: If p α then reject H_{0}.
the result would be unexpected if the null hypothesis were true c.
Krista,
I’m not sure what your question is. You list quite a few (identify null, alternate, test status, pvalue or critical). Are you having trouble identifying the null and alternate hypotheses? Or is it that you don’t know what test to run?
BTW: both the critical value and pvalue will give you the same results. I’d just choose one and go from there.
Stephanie
How it works

You submit your order instructions

We assign an appropriate expert

The expert takes care of your task

We send it to you upon completion
Our achievements

37 684
Delivered orders

763
Professional writers

311
Writers online

4.8/5
Average quality score