Call us toll-free

Quick academic help

Don't let the stress of school get you down! Have your essay written by a professional writer before the deadline arrives.

Calculate the price

Pages:

275 Words

$19,50

photosynthesis Study Sets and Flashcards | Quizlet

For each electron flowing from water to NADP+ (a net change in1.14 volts), two quanta of light are absorbed, one by eachPhotosystem. Each molecule of oxygen released involves the flowof four electrons from two water molecules to two NADP+s andrequires four quanta of sunlight absorbed by each Photosystem toprovide the energy to do this. These are the "Light PhaseReactions" of photosynthesis, which produce two high energychemical products, namely NADPH and ATP.

Question 1 1 out of 1 points At what step in photosynthesis is a gas produced

So we can summarize by saying that the photosynthetic plantstrap solar energy to form ATP and NADPH (Light Phase) and thenuse these as the energy source to make carbohydrates and otherbiomolecules from carbon dioxide and water (Dark Phase),simultaneously releasing oxygen in to the atmosphere. Thechemoheterotrophic animals reverse this process by using theoxygen to degrade the energy-rich organic products ofphotosynthesis to CO2 and water in order to generate ATP fortheir own synthesis of biomolecules.

Cellular Respiration Animation - Sumanas, Inc.

During which step of cellular respiration is the most ATP produced? Krebs cycle glycolysis photosynthesis electron transport chain

The process of photosynthesis is two-part. First, there are the light reactions, where light is converted into chemical energy (a reduced electron carrier and ATP). This occurs in the thylakoids (stacked membranes) of the chloroplasts. The ATP and electron carriers are then used in a second set of reactions, called the light-independent reactions. This also occurs in the chloroplasts, but in an area called the stroma. In this case, carbon dioxide gets used to produce sugars in a series of reactions called the Calvin Cycle, C4 photosynthesis, and crassulacean acid metabolism. You can look in any basic bio textbook to see how much "energy" or "sugar" is produced in each step of the process.

There is also light-independent photosynthesis, which USES ATP and creates glucose from carbon dioxide and water, producing oxygen as a waste product. This is really an energy storage mechanism, so that the organism doing it can later burn the glucose through glycolysis and respiration. This also happens in chloroplasts, so plants can, and animals can't.

Cellular Respiration Flashcards | Quizlet

Quizlet provides photosynthesis activities, flashcards and games. Start learning today for free!

Plant photosynthesis, both the Light Phase and Dark phasereactions, takes place in chloroplasts, which may be regarded asthe "power plants" of the green leaf cells. At night,when there is no sunlight energy, ATP continues to be generatedfor the plant's needs by respiration, i.e., oxidation of(photosynthetically produced) carbohydrate in mitochondria(similar to animals).

The Z Scheme diagram shows the pathway of an electron fromwater (lower right) to NADP+ (upper left). It also shows theenergy relationships which are measured as voltage potentialshown on the scaleon the right. To raise the energy of theelectrons derived from water (+0.82 volts) to the level necessaryto reduce NADP+ to NADPH (-0.32 volts), each electron must beboosted twice (vertical red arrows) by light energy absorbed inPhotosystems I and II. After each boosting , the energizedelectrons flow "downhill" (diagonal black lines) and inthe process transfer some of their energy to a series ofreactions which ultimately adds a phosporus to ADP to producehigh energy ATP and reduces NADP+ to NADPH. There is analternative shunt whereby the electron flow turns back tocytochrome b563 (green line)and this is called and it occurs when there is no need for NADPH, so onlyATP is produced.

photosynthesis notes - Biology Junction
Order now
  • UNMATCHED QUALITY

    As soon as we have completed your work, it will be proofread and given a thorough scan for plagiarism.

  • STRICT PRIVACY

    Our clients' personal information is kept confidential, so rest assured that no one will find out about our cooperation.

  • COMPLETE ORIGINALITY

    We write everything from scratch. You'll be sure to receive a plagiarism-free paper every time you place an order.

  • ON-TIME DELIVERY

    We will complete your paper on time, giving you total peace of mind with every assignment you entrust us with.

  • FREE CORRECTIONS

    Want something changed in your paper? Request as many revisions as you want until you're completely satisfied with the outcome.

  • 24/7 SUPPORT

    We're always here to help you solve any possible issue. Feel free to give us a call or write a message in chat.

Order now

BioCoach Activity Concept 1: Overview of Respiration

During photosynthesis, a plant is able to convert solar energy into a chemical form. It does this by capturing light coming from the sun and, through a series of reactions, using its energy to help build a sugar molecule called glucose. Glucose is made of six carbon atoms, six oxygen atoms, and twelve hydrogen atoms. When the plant makes the glucose molecule, it gets the carbon and oxygen atoms it needs from carbon dioxide, which it takes from the air. Carbon dioxide doesn't have any hydrogen in it, though, so the plant must use another source for hydrogen. The source that it uses is water. There is a lot of water on the earth, and every water molecule is composed of two hydrogen atoms and one oxygen atom. In order to take the hydrogen it needs to build glucose molecules, the plant uses the energy from the sun to break the water molecule apart, taking electrons and hydrogen from it and releasing the oxygen into the air. The electrons it takes are put into an electron transport system, where they are used to produce energy molecules called ATP that are used to build the glucose molecule-- all made possible by the sun's energy. Thus, during photosynthesis a plant consumes water, carbon dioxide, and light energy, and produces glucose and oxygen.

The sugar glucose is important because it is necessary for cellular respiration. During cellular respiration, the chemical energy in the glucose molecule is converted into a form that the plant can use for growth and reproduction. In the first step of respiration, called glycolysis, the glucose molecule is broken down into two smaller molecules called pyruvate, and a little energy is released in the form of ATP. This step in respiration does not require any oxygen and is therefore called anaerobic respiration. In the second step of respiration, the pyruvate molecules are rearranged and combined and rearranged again in a cycle. While the molecules are being rearranged in this cycle, carbon dioxide is produced, and electrons are pulled off and passed into an electron transport system which, just as in photosynthesis, generates a lot of ATP for the plant to use for growth and reproduction. This last step requires oxygen, and therefore is called aerobic respiration. Thus, the final result of cellular respiration is that the plant consumes glucose and oxygen and produces carbon dioxide, water, and ATP energy molecules.

At first, this doesn't seem to make any sense! If the plant can use the energy from the sun to make ATP, why does it go through all the trouble of then using up the ATP to make glucose, just so it can get ATP again? There are two reasons why the plant does this. First, in addition to ATP, the plant needs materials to grow. Glucose is an important building block that is necessary to produce all of the proteins, DNA, cells, tissues, etc. that are important to life, growth, and reproduction. Second, one problem with the sun is that it goes away every night, and during winter it isn't very bright. The plant needs energy all of the time. So, by producing glucose, the plant can store this molecule and then use it to produce energy during the night and over winter when there isn't enough sun to provide good photosynthesis.

It is very interesting how photosynthesis and cellular respiration help each other. During photosynthesis, the plant needs carbon dioxide and water-- both of which are released into the air during respiration. And during respiration, the plant needs oxygen and glucose, which are both produced through photosynthesis! So in a way, the products of photosynthesis support respiration, and the products of respiration support photosynthesis, forming a cycle.

While plants can complete this cycle by themselves, animals cannot, since animals aren't capable of photosynthesis! This means that animals have to survive solely through respiration. Also, since we animals can't produce glucose by ourselves, we have to get it from somewhere else-- from eating plants. We produce carbon dioxide that the plants need, and they produce the oxygen that we need, and then we eat them to get the glucose that we need. It seems that we need the plants a lot more than they need us!

NOVA - Official Website | Illuminating Photosynthesis

Although 2 ATP molecules are used in steps 1-3, 2 ATP molecules are generated in step 7 and 2 more in step 10. This gives a total of 4 ATP molecules produced. If you subtract the 2 ATP molecules used in steps 1-3 from the 4 generated at the end of step 10, you end up with a net total of 2 ATP molecules produced.

Order now
  • You submit your order instructions

  • We assign an appropriate expert

  • The expert takes care of your task

  • We send it to you upon completion

Order now
  • 37 684

    Delivered orders

  • 763

    Professional writers

  • 311

    Writers online

  • 4.8/5

    Average quality score

Order now
  • Kim

    "I have always been impressed by the quick turnaround and your thoroughness. Easily the most professional essay writing service on the web."

  • Paul

    "Your assistance and the first class service is much appreciated. My essay reads so well and without your help I'm sure I would have been marked down again on grammar and syntax."

  • Ellen

    "Thanks again for your excellent work with my assignments. No doubts you're true experts at what you do and very approachable."

  • Joyce

    "Very professional, cheap and friendly service. Thanks for writing two important essays for me, I wouldn't have written it myself because of the tight deadline."

  • Albert

    "Thanks for your cautious eye, attention to detail and overall superb service. Thanks to you, now I am confident that I can submit my term paper on time."

  • Mary

    "Thank you for the GREAT work you have done. Just wanted to tell that I'm very happy with my essay and will get back with more assignments soon."

Ready to tackle your homework?

Place an order