Call us toll-free

Quick academic help

Don't let the stress of school get you down! Have your essay written by a professional writer before the deadline arrives.

Calculate the price

Pages:

275 Words

$19,50

Energy Transformation: Photosynthesis vs. Cellular Respiration

All animals, , use aerobic respiration today, and early animals (, which are called metazoans today) may have also used aerobic respiration. Before the rise of eukaryotes, the dominant life forms, bacteria and archaea, had many chemical pathways to generate energy as they farmed that potential electron energy from a myriad of substances, such as , and photosynthesizers got their donor electrons from hydrogen sulfide, hydrogen, , , and other chemicals. If there is potential energy in electron bonds, bacteria and archaea will often find ways to harvest it. Many archaean and bacterial species thrive in harsh environments that would quickly kill any complex life, and those hardy organisms are called . In harsh environments, those organisms can go dormant for millennia and , waiting for appropriate conditions (usually related to available energy). In some environments, it can .

Read this comparison of photosynthesis and cellular respiration to find out how ..

But the branch of the that readers might find most interesting led to humans. Humans are in the phylum, and the last common ancestor that founded the Chordata phylum is still a mystery and understandably a source of controversy. Was our ancestor a ? A ? Peter Ward made the case, as have others for a long time, that it was the sea squirt, also called a tunicate, which in its larval stage resembles a fish. The nerve cord in most bilaterally symmetric animals runs below the belly, not above it, and a sea squirt that never grew up may have been our direct ancestor. Adult tunicates are also highly adapted to extracting oxygen from water, even too much so, with only about 10% of today’s available oxygen extracted in tunicate respiration. It may mean that tunicates adapted to low oxygen conditions early on. Ward’s respiration hypothesis, which makes the case that adapting to low oxygen conditions was an evolutionary spur for animals, will repeatedly reappear in this essay, as will . Ward’s hypothesis may be proven wrong or will not have the key influence that he attributes to it, but it also has plenty going for it. The idea that fluctuating oxygen levels impacted animal evolution has been gaining support in recent years, particularly in light of recent reconstructions of oxygen levels in the eon of complex life, called and , which have yielded broadly similar results, but their variances mean that much more work needs to be performed before on the can be done, if it ever can be. Ward’s basic hypotheses is that when oxygen levels are high, ecosystems are diverse and life is an easy proposition; when oxygen levels are low, animals adapted to high oxygen levels go extinct and the survivors are adapted to low oxygen with body plan changes, and their adaptations helped them dominate after the extinctions. The has a pretty wide range of potential error, particularly in the early years, and it also tracked atmospheric carbon dioxide levels. The challenges to the validity of a model based on data with such a wide range of error are understandable. But some broad trends are unmistakable, as it is with other models, some of which are generally declining carbon dioxide levels, some huge oxygen spikes, and the generally relationship between oxygen and carbon dioxide levels, which a geochemist would expect. The high carbon dioxide level during the Cambrian, of at least 4,000 PPM (the "RCO2" in the below graphic is a ratio of the calculated CO2 levels to today's levels), is what scientists think made the times so hot. (Permission: Peter Ward, June 2014)

There are a few key differences between cellular respiration and ..

In addition glucose is one of the main products of photosynthesis and starts cellular respiration in both prokaryotes and eukaryotes.

As with enzymes, the molecules used in biological processes are often huge and complex, but ATP energy drives all processes and that energy came from either potential chemical energy in Earth’s interior or sunlight, but even chemosynthetic organisms rely on sunlight to provide their energy. The Sun thus powers all life on Earth. The cycles that capture energy (photosynthesis or chemosynthesis) or produce it (fermentation or respiration) generally have many steps in them, and some cycles can run backwards, such as the . Below is a diagram of the citric acid (Krebs) cycle. (Source: Wikimedia Commons)

The respiration and photosynthesis cycles in complex organisms have been the focus of a great deal of scientific effort, and cyclic diagrams (, ) can provide helpful portrayals of how cycles work. Photosynthesis has several cycles in it, and Nobel Prizes were awarded to the scientists who helped describe the cycles. Chlorophyll molecules , with magnesium in their porphyrin cages, and long tails. Below is a diagram of a chlorophyll molecule. (Source: Wikimedia Commons)

Similarities and differences between photosynthesis …

The dates are controversial, but it appears that after hundreds of millions of years of using various molecules as electron donors for photosynthesis, began to split water to get the donor electron, and oxygen was the waste byproduct. Cyanobacterial colonies are dated to as early as 2.8 bya, and it is speculated that may have appeared as early as 3.5 bya and then spread throughout the oceans. Those cyanobacterial colonies formed the first fossils in the geologic record, called . At Shark Bay in Australia and some other places the water is too saline to support animals that can eat cyanobacteria, and give us a glimpse into early life on Earth.

As with other early life processes, the first photosynthetic process was different from today’s, but the important result – capturing sunlight to power biological processes – was the same. The scientific consensus today is that a respiration cycle was modified, and a in a was used for capturing sunlight. Intermediate stages have been hypothesized, including the cytochrome using a pigment to create a shield to absorb ultraviolet light, or that the pigment was part of an infrared sensor (for locating volcanic vents). But whatever the case was, the conversion of a respiration system into a photosynthetic system is considered to have only happened , and all photosynthesizers descended from that original innovation.

Order now
  • UNMATCHED QUALITY

    As soon as we have completed your work, it will be proofread and given a thorough scan for plagiarism.

  • STRICT PRIVACY

    Our clients' personal information is kept confidential, so rest assured that no one will find out about our cooperation.

  • COMPLETE ORIGINALITY

    We write everything from scratch. You'll be sure to receive a plagiarism-free paper every time you place an order.

  • ON-TIME DELIVERY

    We will complete your paper on time, giving you total peace of mind with every assignment you entrust us with.

  • FREE CORRECTIONS

    Want something changed in your paper? Request as many revisions as you want until you're completely satisfied with the outcome.

  • 24/7 SUPPORT

    We're always here to help you solve any possible issue. Feel free to give us a call or write a message in chat.

Order now

BetterLesson - Photosynthesis and Cellular Respiration

Some bacteria use Photosystem I and some use Photosystem II. More than two bya, and maybe more than three bya, cyanobacteria used both, and a miraculous instance of innovation tied them together. were then used to strip electrons from water. Although the issue is still controversial regarding when it happened and how, that instance of cyanobacteria's using manganese to strip electrons from water is responsible for oxygenic photosynthesis. It seems that some enzymes that use manganese may have been "drafted" into forming the manganese cluster responsible for splitting water in oxygenic photosynthesis. Water is not an easy molecule to strip an electron from, a single cyanobacterium seems to have “stumbled” into it, and it probably happened only . Once an electron was stripped away from water in Photosystem I, then stripping away a proton (a hydrogen nucleus) essentially removed one hydrogen atom from the water molecule. That proton was then used to drive a “turbine” that manufactures ATP, and wonderful show how those protons drive that enzyme turbine (). Oxygen is a waste product of that innovative ATP factory.

Differences between photosynthesis and cellular respiration

About the time that the continents began to grow and began, Earth produced its first known glaciers, between 3.0 and 2.9 bya, although the full extent is unknown. It might have been an ice age or merely some mountain glaciation. The , and numerous competing hypotheses try to explain what produced them. Because the evidence is relatively thin, there is also controversy about the extent of Earth's ice ages. About 2.5 bya, the Sun was probably a little smaller and only about as bright as it is today, and Earth would have been a block of ice if not for the atmosphere’s carbon dioxide and methane that absorbed electromagnetic radiation, particularly in the . But life may well have been involved, particularly oxygenic photosynthesis, and it was almost certainly involved in Earth's first great ice age, which may have been a episode, and some pertinent dynamics follow.

between photosynthesis and cellular respiration …

Perhaps a few hundred million years after the first mitochondrion appeared, as the oceanic oxygen content, at least on the surface, increased as a result of oxygenic photosynthesis, those complex cells learned to use oxygen instead of hydrogen. It is difficult to overstate the importance of learning to use oxygen in respiration, called . Before the appearance of aerobic respiration, life generated energy via and . Because oxygen , aerobic respiration generates, on average, about per cycle as fermentation and anaerobic respiration do (although some types of anaerobic respiration can get ). The suite of complex life on Earth today would not have been possible without the energy provided by oxygenic respiration. At minimum, nothing could have flown, and any animal life that might have evolved would have never left the oceans because the atmosphere would not have been breathable. With the advent of aerobic respiration, became possible, as it is several times as efficient as anaerobic respiration and fermentation (about 40% as compared to less than 10%). Today’s food chains of several levels would be constrained to about two in the absence of oxygen. Some scientists have and oxygen and respiration in eukaryote evolution. is controversial.

Order now
  • You submit your order instructions

  • We assign an appropriate expert

  • The expert takes care of your task

  • We send it to you upon completion

Order now
  • 37 684

    Delivered orders

  • 763

    Professional writers

  • 311

    Writers online

  • 4.8/5

    Average quality score

Order now
  • Kim

    "I have always been impressed by the quick turnaround and your thoroughness. Easily the most professional essay writing service on the web."

  • Paul

    "Your assistance and the first class service is much appreciated. My essay reads so well and without your help I'm sure I would have been marked down again on grammar and syntax."

  • Ellen

    "Thanks again for your excellent work with my assignments. No doubts you're true experts at what you do and very approachable."

  • Joyce

    "Very professional, cheap and friendly service. Thanks for writing two important essays for me, I wouldn't have written it myself because of the tight deadline."

  • Albert

    "Thanks for your cautious eye, attention to detail and overall superb service. Thanks to you, now I am confident that I can submit my term paper on time."

  • Mary

    "Thank you for the GREAT work you have done. Just wanted to tell that I'm very happy with my essay and will get back with more assignments soon."

Ready to tackle your homework?

Place an order